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In the nuclear science and engineering field, radiation transport calculations play a 

key-role in the design and optimization of nuclear devices. The linear Boltzmann 

equation describes the angular, energy and spatial variations of the particle or radiation 

distribution. The discrete ordinates method (SN) is the most widely used technique for 

solving the linear Boltzmann equation. However, for realistic problems, the memory and 

computing time require the use of supercomputers. This research is devoted to the 

development of new formulations for the SN method, especially for highly angular 

dependent problems, in parallel environments. The present research work addresses two 

main issues affecting the accuracy and performance of SN transport theory methods: 

quadrature sets and acceleration techniques. 

New advanced quadrature techniques which allow for large numbers of angles with 

a capability for local angular refinement have been developed. These techniques have 
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been integrated into the 3-D SN PENTRAN (Parallel Environment Neutral-particle 

TRANsport) code and applied to highly angular dependent problems, such as CT-Scan 

devices, that are widely used to obtain detailed 3-D images for industrial/medical 

applications. 

In addition, the accurate simulation of core physics and shielding problems with 

strong heterogeneities and transport effects requires the numerical solution of the 

transport equation. In general, the convergence rate of the solution methods for the 

transport equation is reduced for large problems with optically thick regions and 

scattering ratios approaching unity. To remedy this situation, new acceleration algorithms 

based on the Even-Parity Simplified SN (EP-SSN) method have been developed. A new 

stand-alone code system, PENSSn (Parallel Environment Neutral-particle Simplified Sn), 

has been developed based on the EP-SSN method. The code is designed for parallel 

computing environments with spatial, angular and hybrid (spatial/angular) domain 

decomposition strategies. The accuracy and performance of PENSSn has been tested for 

both criticality eigenvalue and fixed source problems. 

PENSSn has been coupled as a preconditioner and accelerator for the SN method 

using the PENTRAN code. This work has culminated in the development of the Flux 

Acceleration Simplified Transport (FAST©) preconditioning algorithm, which constitutes 

a completely automated system for preconditioning radiation transport calculations in 

parallel computing environments. 

 



1 

CHAPTER 1 
INTRODUCTION 

1.1 Overview 

In the nuclear engineering field, particle transport calculations play a key-role in 

the design and optimization of nuclear devices. The Linear Boltzmann Equation (LBE) is 

used to describe the angular, energy and spatial variations of the particle distribution, i.e., 

the particle angular flux.1 Due to the integro-differential nature of this equation, an 

analytical solution cannot be obtained, except for very simple problems. For real 

applications, the LBE must be solved numerically via an iterative process. To solve large, 

real-world problems, significant memory and computational requirements can be handled 

using parallel computing environments, enabling memory partitioning and multitasking. 

The objective of this dissertation is to investigate new techniques for improving the 

efficiency of the of the SN method for solving problems with highly angular dependent 

sources and fluxes in parallel environments. In order to achieve this goal, I have 

investigated two major areas: 

1. Advanced quadrature sets for problems characterized with highly angular 
dependent fluxes and/or sources. 

2. Advanced acceleration/preconditioning algorithms. 
 

1.2 The Linear Boltzmann Equation 

The LBE is an integro-partial differential equation, which describes the behavior of 

neutral particle transport. The Boltzmann equation, together with the appropriate 

boundary conditions, constitutes a mathematically well-posed problem having a unique 

solution. The solution is the distribution of particles throughout the phase space, i.e., 
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space, energy, and angle. The distribution of particles is, in general, a function of seven 

independent variables: three spatial, two angular, one energy, and one time variable. The 

time-independent LBE in its general integro-differential form1 is given by Eq. 1.1. 
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  (1.1) 

In Eq. 1.1, I have defined the following quantities: 

ψ : Angular flux [particles/cm2/MeV/sterad/sec] . 
rr : Particle position in a 3-D space [cm]. 
E: Particle energy [MeV]. 
Ω̂ : Particle direction unit vector. 

tσ : Macroscopic total cross-section [1/cm/MeV]. 

extq : External independent source [particles/cm3/MeV/sterad/sec] . 

sσ : Macroscopic double-differential scattering cross-section [1/cm/sterad/MeV]. 
χ : Fission spectrum [1/MeV]. 
ν : Average number of neutrons generated per fission. 

fσ : Macroscopic fission cross-section [1/cm/MeV]. 
 

1.3 Advanced Angular Quadrature Sets for the Discrete Ordinates Method 

The discrete ordinates method (SN) is widely used in nuclear engineering to obtain 

a numerical solution of the integro-differential form of the Boltzmann transport equation. 

The method solves the LBE for a discrete number of ordinates (directions) with 

associated weights.2 The combination of discrete directions and weights is referred to as 

quadrature set.3 The major drawback of the SN method is the limited number of directions 

involved, which, in certain situations, may lead to the so called ray-effects, which appear 

as unphysical flux oscillations. In general, this behavior occurs for problems with highly 
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angular dependent sources and/or fluxes, or when the source is localized in a small region 

of space, in low density or highly absorbent media. 

In the past, several remedies for ray-effects have been proposed; the most obvious 

one is to increase the number of directions of the quadrature set, or equivalently the SN 

order. However, this approach can lead to significant memory requirements and longer 

computational times. Carlson and Lathrop proposed a number of remedies4-5 for ray-

effects based on specialized quadrature sets, which satisfy higher order moments of the 

direction cosines. Remedies based on first-collision approximations have also been 

investigated.3 The source of particles generated from first-collision processes is often less 

localized than the true source; hence, the flux due to this source is usually less prone to 

ray-effects than the flux from the original source. If the true source is simple enough, 

analytic expressions can be obtained for the uncollided flux and used to produce a first 

collision source; however, for general sources and deep-penetration problems, this 

method can be very time-consuming. An alternative approach6 is to expand the angular 

flux in terms of spherical harmonics (PN). The PN method does not suffer from ray-

effects, because the angular dependency in the angular flux is treated using continuous 

polynomial functions. However, the PN method has found limited applicability due to its 

computational intensive requirements. 

One of the most widely used techniques for generating quadrature sets is the level-

symmetric3 (LQN) method; however, the LQN method yields negative weights beyond 

order S20. In problems with large regions of air or highly absorbent materials, higher  

order (>20) quadrature sets are needed in order to mitigate ray-effects; therefore, it is 

necessary to develop techniques which allow for higher order or biased quadrature sets. 
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In the past, different techniques have been investigated to remedy this issue. The 

equal weight quadrature set (EQN), developed by Carlson,7 is characterized by positive 

weights for any SN order. Other quadrature sets have been derived, by relaxing the 

constraints imposed by the LQN method;2 for this purpose, the Gauss quadrature formula 

and Chebyshev polynomials have been used for one-dimensional cylindrical or two-

dimensional rectangular geometries.4 In a recent study, the uniform positive-weight 

quadrature sets8 (UEN and UGN) have been derived. The UEN quadrature set is derived by 

uniformly partitioning the unit sphere into the number of directions defined by the SN 

order while the UGN quadrature set selects the ordinates along the z-axis as roots of 

Legendre polynomials. 

A new biasing technique, named Ordinate Splitting (OS), has been developed9 for 

the Equal Weight (EW) quadrature set; the OS technique is a method which is suitable to 

solve problems in which the particle angular flux and/or source are peaked along certain 

directions of the unit sphere. The idea is to select a direction of flight of the neutron and 

split it into a certain number of directions of equal weights, while conserving the original 

weight. This new biasing technique has been implemented in the PENTRAN code10 and 

it has been proven very effective for medical physics applications such as CT-Scan 

devices.11-15 

In this research work, I have developed new quadrature sets11-12 based on Legendre 

(PN) and Chebyshev (TN) polynomials. The Legendre-Chebyshev (PN-TN) quadrature set 

is derived by setting the polar angles equal to the roots of the Legendre polynomial of 

order N, and the azimuthal angles are calculated by finding the roots of the Chebyshev 

polynomials. 
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The Legendre Equal-Weight (PN-EW) quadrature set is derived by choosing the 

polar angles as the roots of the Legendre polynomial of order N, while the azimuthal 

angles are calculated by equally partitioning a 90 degree angle. The set of directions is 

then arranged on the octant of the unit sphere similar to the level-symmetric triangular 

pattern. The main advantage of these new quadrature sets is the absence of negative 

weights for any SN order, and their superior accuracy compared to other positive schemes 

such as equal weight quadrature sets. 

Moreover, I have developed a new refinement technique, referred to as Regional 

Angular Refinement (RAR), which leads to a biased angular quadrature set.13-15 The RAR 

technique consists of fitting an auxiliary quadrature set in a region of the unit sphere, 

where refinement is needed. These quadrature sets have been applied successfully to 

large problems, such as a CT-Scan device used for medical/industrial imaging9 and a 

Time-of-Flight (TOF) experiment simulation.16 The benefit of using biased quadrature 

sets is to achieve accurate solutions for highly angular dependent problems with reduced 

computational time. 

1.4 Advanced Acceleration Algorithms for the SN Method on Parallel Computing 
Environments 

Radiation transport calculations for realistic systems involve the solution of the 

discretized SN equations. A typical 3-D transport model requires the discretization of the 

SN equations in ~300,000 spatial meshes, 47 energy groups, and considering an S8 

calculation, a total of 80 directions on the unit sphere. These figures yield approximately 

1.13 billion unknowns. In terms of computer memory, this number translates into ~ 9 

GBytes of RAM for storage (in single precision) of only the angular fluxes. It is clear that 

an efficient solution for such a problem is out of the scope of a regular workstation 
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available with current technology. Therefore, it is necessary to develop new algorithms 

capable of harnessing the computational capabilities of supercomputers. Based on this 

philosophy, in the late 1990s G. Sjoden and A. Haghighat have developed a new 3-D 

parallel radiation transport code: PENTRAN (Parallel Environment Neutral-particle 

Transport).10 

However, besides the size and complexity of the problem being solved, other 

aspects come into play, especially when dealing with criticality eigenvalue problems. 

Because of the physics of these problems, the convergence rate of the currently used 

iterative methods is quite poor. For realistic problems, such as whole-core reactor 

calculations performed in a 3-D geometry, the solution of the SN equations may become 

impractical if proper acceleration methods17 are not employed. 

The main philosophy behind the novel acceleration algorithms developed in this 

work is to employ a simplified mathematical model which closely approximates the SN 

equations, yet can be solved efficiently. 

The new acceleration/preconditioning algorithms have been developed during the 

course of this research in three major phases: 

1. Development of the PENSSn code based on the Even-Parity Simplified SN (EP-
SSN) method. 

2. Investigation of a new synthetic acceleration algorithm based on the EP-SSN 
method. 

3. Development of an automated acceleration system for the SN method on parallel 
environments: FAST© (Flux Acceleration Simplified Transport). 

 
1.5 The Even-Parity Simplified SN Method 

The Even-Parity Simplified SN (EP-SSN) method is developed based on the 

philosophy considered in the PN and Simplified Spherical Harmonics (SPN) methods.18 
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The spherical harmonics (PN) approximation to the transport equation is obtained 

by expanding the angular flux using spherical harmonics functions truncated to order N, 

where N is an odd number; these functions form a complete basis in the limit of the 

truncation error. In the limit of ∞→N , the exact transport solution is recovered.1 In 3-D 

geometries, the number of PN equations grows as ( )21+N . The PN equations can be 

reformulated in a second-order form, cast as ( ) 2/1 2+N  diffusion-like equations, 

characterized by an elliptic operator. However, the number of these equations is very 

large, and the coupling involves not only angular moments, but also mixed spatial 

derivatives of these moments.6 

 Because of these issues, to reduce the computing time in the early 1960s, Gelbard  

et al. proposed the Simplified Spherical Harmonics18 or SPN method. The Gelbard 

procedure consists of extending the spatial variable to 3-D by substituting the second 

order derivatives in the 1-D PN equations with the 3-D Laplacian operator. As a result, 

coupling of spatial derivatives is eliminated, yielding only (N+1) equations as compared 

to ( )21+N . Further, since the SPN equations can be reformulated as second-order elliptic 

equations, effective iterative techniques such as Krylov subspace19-20 methods, can be 

employed. 

The main disadvantage of the SPN equations is that the exact solution to the 

transport equation is not recovered as ∞→N , due to terms that are inherently omitted in 

replacing a 1-D leakage term with a simplified 3-D formulation. However, for idealized 

systems characterized by homogeneous materials and isotropic scattering, the SPN and 

the SN equations yield the same solution, given the same quadrature set and spatial 

discretization is used for both methods. 
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Despite this fact, the SPN equations yield improved solutions21-22 compared to the 

currently used diffusion equation. The theoretical basis for the SPN equations has been 

provided by many authors using variational methods and asymptotic analysis.22 It has 

been shown that these equations are higher-order asymptotic solutions of the transport 

equation. Moreover, Pomraning has demonstrated that the SPN equations, for odd N, are a 

variational approximation to the one-group even-parity transport equation with isotropic 

scattering in an infinite homogeneous medium. 

Recently, the SPN formulation has received renewed interest, especially in reactor 

physics applications. For applications such as the MOX fuel assemblies22-23 or for reactor 

problems with strong transport effects,24 diffusion theory does not provide accurate 

results, while the SPN equations improve the accuracy of the solution within a reasonable 

amount of computation time. 

Initially, I derived the SP3 equations starting from the 1-D P3 equations;25 however, 

for developing a general order algorithm, I derived a general formulation using the even-

parity form of the SN transport equation.26 The Even-Parity Simplified SN (EP-SSN) 

formulation has some interesting properties that make it suitable to develop algorithms of 

any arbitrary order. Chapter 4 is dedicated to this issue. To make the method more 

effective, the convergence properties of the EP-SSN equations were improved by 

modifying the scattering term; it will be shown that this improved derivation is problem 

dependent but can reduce the number of iterations significantly. 

I have developed a general 3-D parallel code,23 PENSSn (Parallel Environment 

Neutral-particle Simplified SN), based on the EP-SSN equations. The EP-SSN equations 

are discretized with a finite-volume approach, and the spatial domain is partitioned into 
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coarse meshes with variable fine grid density in each coarse mesh emulating the 

PENTRAN grid structure. A projection algorithm is used to couple the coarse meshes 

based on the values of the even-parity angular fluxes on the interfaces. PENSSn uses 

iterative solvers based on Krylov subspace19 methods: the Conjugate Gradient (CG) and 

the Bi-Conjugate Gradient (Bi-CG) solvers. In addition, I have developed a 

preconditioner based on the Incomplete Cholesky factorization20 for the CG method. The 

finite-volume discretization of the EP-SSN equations in a 3-D Cartesian geometry yields 

sparse matrices with a 7-diagonal sparse structure. Therefore, I optimized the memory 

management of PENSSn by using a Compressed Diagonal Storage (CDS) approach, 

where only the non-zero elements on the diagonals are stored in memory. 

The PENSSn code is designed for parallel computing environments with angular, 

spatial and hybrid (angular/spatial) domain decomposition algorithms.23 The space 

decomposition algorithm partitions the 3-D Cartesian space into coarse meshes which are 

then distributed among the processors while the angular decomposition algorithm 

partitions the directions among the processors. The hybrid decomposition algorithm is a 

combination of the two algorithms discussed above. Note that the hybrid decomposition 

combines the benefits of memory partitioning offered by the spatial decomposition 

algorithm, and the speed-up offered by the angular decomposition algorithm. The code is 

written in Fortran 90, and for seamless parallelization, the MPI (Message Passing 

Interface) library27 is used. 

I have tested the PENSSn code for problems characterized by strong transport 

effects, and have shown that the improvements over the diffusion equation can be 

significant.26 The solutions obtained with the EP-SSN method are in good agreement with 
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SN and Monte Carlo methods; however, the computation time is significantly lower. 

Hence, these results indicate that the EP-SSN method is an ideal candidate for the 

development of an effective acceleration or preconditioning algorithm for radiation 

transport calculations. 

1.6 A New Synthetic Acceleration Algorithm Based on the EP-SSN Method 

As mentioned earlier in this chapter, the solution of the linear Boltzmann equation 

is obtained numerically via an iterative process. The most widely used technique to 

iteratively solve the transport equation is the Source Iteration (SI) method3 or Richardson 

iteration. The convergence properties of this method are related to the spectral radius of 

the transport operator. It can be shown that for an infinite, homogeneous medium, the 

spectral radius of the transport operator is dominated by the scattering ratio c, given by 

t

sc
σ
σ

= ,      (1.2) 

where sσ  is the macroscopic scattering cross-section and  is the macroscopic total cross-

section. Note that Eq. 1.2 can be obtained by Fourier analysis in an infinite homogeneous 

medium. The asymptotic convergence rate ∞v  is defined as 

)log(cv −→∞ .         (1.3) 

Eq. 1.3 indicates that for problems with scattering ratios close to unity, the 

unaccelerated SI method is ineffective, because the asymptotic convergence rate tends 

toward zero. Hence, the use of an acceleration scheme is necessary. 

In the past, many acceleration techniques have been proposed25 for solving the 

steady-state transport equation. The synthetic methods have emerged as effective 

techniques to speed-up the convergence of the SI iterative process.28 In the synthetic 
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acceleration process a lower-order approximation of the transport equation (e.g., 

diffusion theory) is corrected using the transport equation at each iteration. In this way 

the spectral radius of the accelerated transport operator is reduced with consequent speed-

up of the iteration process. 

Two categories of synthetic methods have been investigated so far, the Diffusion 

Synthetic Acceleration (DSA) and the Transport Synthetic Acceleration (TSA).29-30 The 

first method has been proven to be very effective for 1-D problems and for certain classes 

of multi-dimensional problems. However, recently it has been shown that for multi-

dimensional problems with significant material heterogeneities, the DSA method fails to 

converge efficiently.31-32 The same behavior, along with possible divergence, has been 

reported also for TSA.30 

I have developed and tested a new synthetic acceleration algorithm33 based on the 

simplified form of the Even-Parity transport equations (EP-SSN). I tested the EP-SSN 

algorithm for simple 3-D problems and I concluded that it is affected by instability 

problems. These instabilities are similar in nature to what has been reported for DSA by 

Warsa, Wareing, and Morel.31-32 The main problems affecting the stability of the 

synthetic methods are material heterogeneities and the inconsistent discretization of the 

lower-order operator with the transport operator, which leads to divergence if the mesh 

size is greater than ~1 mean free path. 

Moreover, because the synthetic acceleration method has been implemented into 

the PENTRAN code, another consideration comes into play. The spatial differencing in 

the PENTRAN code system is based on an Adaptive Differencing Strategy10 (ADS); with 

this method the code automatically selects the most appropriate differencing scheme 
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based on the physics of the problem. Hence, the discretization of the lower-order operator 

should be consistent with every differencing scheme present in the code. This task is 

feasible if we consider only the linear-diamond (LD) differencing scheme; however, the 

complexity increases if we consider the Directional Theta Weighted (DTW) or the 

Exponential Directional Weighted (EDW) differencing schemes.34 Moreover, it has been 

shown that even a fully consistent discretization of the lower-order operator does not 

guarantee the convergence of the synthetic method. 

Due to the issues discussed above, I have developed a system that utilizes the EP-

SSN method as preconditioner for the SN method. 

1.7 An Automatic Preconditioning Algorithm for the SN Method: FAST© (Flux 
Acceleration Simplified Transport) 

The last phase of the development of an effective acceleration algorithm for the SN 

method has culminated in the development of the FAST© system (Flux Acceleration 

Simplified Transport). The FAST© algorithm is based on the kernel of the PENSSn code. 

The main philosophy followed in the development of the system is completely antithetic 

to the synthetic acceleration approach. The idea is to quickly obtain a relatively accurate 

solution with the EP-SSN method and to use it a preconditioned initial guess for the SN 

transport calculation. This approach has the main advantage of decoupling the two 

methods, hence avoiding all the stability issues discussed above. 

The FAST© system is currently implemented into the PENTRAN-SSn Code 

System for distributed memory environments, and it is completely automated from a user 

point of view. Currently, the system has successfully accelerated large 3-D criticality 

eigenvalue problems, speeding-up the calculations by a factor of 3 to 5 times, and hence 

reducing significantly the spectral radius. 
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1.8 Outline 

The remainder of this dissertation is organized as follows. Chapter 2 provides the 

theory for the discrete ordinates method. The discretization of the phase space variables 

in the transport equation will be discussed, along with the proper boundary conditions. 

Chapter 3 discusses the theoretical development of the advanced and biased quadrature 

sets for the discrete ordinates method. It also presents the application of the new 

quadrature sets for the simulation of a CT-Scan device and for the Kobayashi benchmark 

problem 3. Chapter 4 discusses the derivation of the EP-SSN equations. Chapter 5 

discusses the numerical methods for the solution of the EP-SSN equations, along with the 

iterative solvers based on Krylov subspace methods. Chapter 6 addresses the numerics 

and accuracy of the EP-SSN equations. Chapter 7 presents the parallel algorithms 

implemented in the PENSSn code for distributed memory architectures. Chapter 8 

describes the development of a new synthetic acceleration algorithm based on the EP-SSN 

method and its limitations. Chapter 9 focuses on the development of the FAST© 

preconditioner; the performance of the algorithm is measured with two test problems and 

a large 3-D whole-core criticality eigenvalue calculation. Chapter 10 will draw the 

conclusions on the objectives accomplished and it will point out some aspects for future 

development.  
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CHAPTER 2 
THE DISCRETE ORDINATES METHOD 

In this chapter, the Discrete Ordinates Method (SN) will be discussed in detail. The 

discretized form of the transport equation is formulated in a 3-D Cartesian geometry. I 

also address the iterative techniques and acceleration methods used to solve the SN 

transport equations. 

2.1 Discrete Ordinates Method (SN) 

The Discrete Ordinates Method (SN) is widely used to obtain numerical solutions of 

the linear Boltzmann equation. In the SN method, all of the independent variables (space, 

energy and angle) are discretized as discussed below. 

2.1.1 Discretization of the Energy Variable 

The energy variable of the transport equation is discretized using the multigroup 

approach.3 The energy domain is partitioned into a number of discrete intervals 

(g=1…G), starting with the highest energy particles (g=1), and ending with the lowest 

(g=G). The particles in energy group g are those with energies between Eg-1 and Eg. The 

multigroup cross-sections for a generic reaction process x are defined as 

∫ ∫

∫∫
−

−

ΩΩ

ΩΩ
=

1

1

4

4
,

)ˆ,,(

)ˆ,,(),(
)(

g

g

g

g

E

E

x

E

E
gx

ErddE

ErErddE
r

π

π

ψ

ψσ
σ r

rr
r .   (2.1) 

Based on the definition given in Eq. 2.1, the group constants are defined in Eqs. 

2.2, 2.3, and 2.4, for the “total,” “fission” and “scattering” processes, respectively. 
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With the group constants defined above, the multigroup formulation of the transport 

equation is written as 
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for g=1, G, 

where the angular flux in group g is defined as 

∫
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In Eq. 2.5, )ˆ,( Ωrqe
g
r  is the angular dependent fixed source; in general, for 

criticality eigenvalue problems, this term is set to zero. The scalar flux in Eq. 2.5 is 

defined as 

)ˆ,()(
4
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rr .        (2.7) 

In a 3-D Cartesian geometry, the “streaming” term can be expressed as 
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where the direction cosines are defined as 

îˆ ⋅Ω=µ , ĵˆ ⋅Ω=η , k̂ˆ ⋅Ω=ξ .   (2.9) 

Figure 2-1 shows the Cartesian space-angle system of coordinates in three 

dimensions. 

 
Figure 2-1. Cartesian space-angle coordinates system in 3-D geometry. 

The multigroup transport equation, with the scattering kernel expanded in terms of 

Legendre polynomials and the angular flux in terms of spherical harmonics is given by 

Eq. 2.10. The complete derivation of the scattering kernel expansion in spherical 

harmonics shown in Eq. 2.10 is given in Appendix A. 
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where 

µ : direction cosine along the x-axis 
η : direction cosine along the y-axis 
ξ : direction cosine along the z-axis 

gσ : total macroscopic cross-section 

ϕ : azimuthal angle, i.e. 







µ
ξarctan  

),,,,( ϕµψ zyxg : angular flux in energy group g 

ggsl →',σ : lth moment of the macroscopic transfer cross-section 
)(µlP : lth Legendre Polynomial 

)(, µφ gl : lth flux moment 

)(µk
lP : associated lth, kth Legendre Polynomial 

)(, µφ k
gCl : cosine associated lth, kth flux moment 

)(, µφ k
gSl : sine associated lth, kth flux moment 

gχ : group fission spectrum 
k : criticality eigenvalue 

gf ,νσ : fission neutron generation cross-section 
 
2.1.2 Discretization of the Angular Variable 

The angular variable,Ω
)

, in the transport equation is discretized by considering a 

finite number of directions, and the angular flux is evaluated only along these directions. 

Each discrete direction can be visualized as a point on the surface of a unit sphere with an 

associated surface area which mathematically corresponds to the weight of the integration 

scheme. The combination of the discrete directions and the corresponding weights is 
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referred to as quadrature set. In general, quadrature sets should satisfy the following 

properties:3 

• The associated weights must be positive and normalized to a constant, usually 
chosen to be one 

∑
=

=
M

m
mw

1
0.1 .     (2.11) 

• The quadrature set is usually chosen to be symmetric over the unit sphere, so the 
solution will be invariant with respect to a 90-degree axis rotation and reflection. 
This condition results in the odd-moments of the direction cosines having the 
following property 
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• The quadrature set must lead to accurate values for moments of the angular flux 
(i.e., scalar flux, currents); this requirement is satisfied by the following conditions 
on the even-moments of the direction cosines as follows 

∑ ∑ ∑
= = = +

===
M

m

M

m

M

m

n
mm

n
mm

n
mm n

www
1 1 1 1

1ξηµ , for n even.  (2.13) 

A widely used method for generating a quadrature set is the level-symmetric 

technique (LQN). In this technique, the directions are ordered on each octant of the unit 

sphere along the z-axis (ξ ) on N/2 distinct levels. The number of directions on each level 

is equal to 1
2

+− iN , for i=1, N/2. It is worth noting that in 3-D geometries, the total 

number of directions is M=N(N+2), where N is the order of the SN method. 

Considering 1222 =++ kji ξηµ  and 2
2
+=++

Nkji , where N refers to the number 

of levels and i, j, k are the indices of the direction cosines, we derive a formulation for 

determining the directions as follows 

∆−+= )1(2
1

2 ii µµ ,    (2.14) 

where 
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1 ≤< µ .  (2.15) 

In Eq. 2.14 the choice of µ1 determines the distribution of directions on the octant. 

If the value of µ1 is small, the ordinates will be clustered near the poles of the sphere; 

alternatively, if the value of µ1 is large, the ordinates will be placed far from the poles. 

The weight associated to each direction, called a point weight, is then evaluated 

with another set of equations. For example, in the case of an S8 level-symmetric 

quadrature set, this condition can be formulated as follows 

121 22 wpp =+ ,        (2.16a) 

2322 wpp =+ ,       (2.16b) 

322 wp = ,     (2.16c) 

411 wp = ,              (2.16d) 

where p1, p2 and p3 are point weights associated with each direction, and w1, w2, w3, w4 

are the weights associated with the levels, as shown in Figure 2-2. 

 
Figure 2-2. Point weight arrangement for a S8 level-symmetric quadrature set. 
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As an example, Figure 2-3 shows the S20 LQN quadrature set for one octant of the 

unit sphere.  

 
Figure 2-3. S20 LQN quadrature set. 

Note that, this quadrature set is limited by unphysical negative weights beyond 

order S20. Therefore, if a higher order quadrature set is needed beyond S20, another 

formulation has to be developed, which satisfies the even- and odd-moments conditions. 

To address this issue, I have developed new quadrature techniques based on the Gauss-

Legendre quadrature formula and on the Chebyshev polynomials. 

2.1.3 Discretization of the Spatial Variable 

The linear Boltzmann equation, given in Eq. 2.10, can be rewritten in an 

abbreviated form as 
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for Mm ,1=  and Gg ,1= .        

 The angle and energy dependence are denoted by the indices m and g, respectively. 

The right hand side of Eq. 2.17 represents the sum of the scattering, fission and external 

sources. 
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The spatial domain is partitioned into computational cells, bounded by x1/2, x3/2,…, 

xI+1/2; y1/2, y3/2,…, yJ+1/2; z1/2, z3/2,…, zK+1/2. The cross-sections are assumed to be constant 

within each cell and they are denoted by kji ,,σ . Eq. 2.17 is then integrated over the cell 

volume kjikji zyxV ∆∆∆=,, , and then divided by the cell volume to obtain the volume- and 

surface-averaged fluxes, therefore reducing to 
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In Eq. 2.18, the indices i, j, k represent the cell-center values, while i±1/2, j±1/2, k±1/2 

refer to the surface values. 

2.1.4 Differencing Schemes 

For the SN method, different classes of differencing schemes are available. Low-

order differencing schemes require only the angular fluxes, and the average values at the 

cell boundaries to be related at the cell average value. Various forms of Weighted 

Difference (WD) schemes belong to this class. High-order differencing schemes require 

higher order moments, and may be linear or non-linear. Discontinuous, characteristic, and 

exponential schemes are examples of high-order differencing schemes.35 

The solution of the SN equations is obtained by marching along the discrete 

directions generated in each octant of the unit sphere; this process is usually referred to as 

a transport sweep.3 For each computational cell, the angular fluxes on the three incoming 

surfaces are already known, from a previous calculation or boundary conditions. The cell-

center fluxes and the fluxes on the three outgoing surfaces must be calculated, hence 
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additional relationships are needed. The additional relationships are referred to as the 

“differencing schemes”. The general form of WD schemes can be expressed as 

gmkjigmkjigmkjigmkjigmkji aa ,,,,2/1,,,,,,,,2/1,,,,,,,, )1( −+ Ψ−+Ψ=Ψ ,        (2.19a) 

                             gmkjigmkjigmkjigmkjigmkji bb ,,,2/1,,,,,,,,2/1,,,,,,,,, )1( −+ Ψ−+Ψ=Ψ ,             (2.19b) 

                             gmkjigmkjigmkjigmkjigmkji cc ,,2/1,,,,,,,,2/1,,,,,,,,,, )1( −+ Ψ−+Ψ=Ψ .  (2.19c) 

The values ai,j,k,m,g, bi,j,k,m,g, and ci,j,k,m,g are determined based on the type of weighted 

scheme employed. 

2.1.4.1 Linear-Diamond Scheme (LD) 

In the LD scheme, the cell-average flux is an arithmetic average of any two 

opposite boundary fluxes; hence the weights are set to constant values a=b=c=1/2. 

( )
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gmkjigmkjigmkji
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−+

Ψ+Ψ=

=Ψ+Ψ=

=Ψ+Ψ=Ψ

   (2.20) 

For example, in the direction 0>mµ , 0>mη , 0>mξ  the outgoing fluxes are obtained as 

follows 

gmkjigmkjigmkji ,,,,2/1,,,,,,,,2/1 2 −+ Ψ−Ψ=Ψ ,   (2.21a) 

gmkjigmkjigmkji ,,,2/1,,,,,,,,2/1, 2 −+ Ψ−Ψ=Ψ ,   (2.21b) 

gmkjigmkjigmkji ,,2/1,,,,,,,,2/1,, 2 −+ Ψ−Ψ=Ψ .   (2.21c) 

We can then eliminate the fluxes on the outgoing surfaces in Eq. 2.18 and obtain 

the center-cell angular flux 



23 

 

k

m

j

m

i

m
kji

kjigmkji
k

m
gmkji

j

m
gmkji

i

m

gmkji

zyx

Q
zyx

∆
+

∆
+

∆
+

+Ψ
∆

+Ψ
∆

+Ψ
∆

=Ψ
−−−

ξηµ
σ

ξηµ

222

222

,,

,,,,2/1,,,,,2/1,,,,,2/1

,,,, .      (2.22) 

The outgoing fluxes are then evaluated using Eqs. 2.21a, b, and c. 

The LD differencing scheme may yield negative angular fluxes in regions where 

the flux gradient is large, even if the incoming fluxes and scattering source are positive. 

In this case, one approach is to set negative fluxes equal to zero, and then the cell-average 

flux is recalculated to preserve the balance of particles. This approach is referred to as 

negative flux fix-up (DZ). The DZ scheme performs better than the LD in practical 

applications, but the linearity and accuracy of the LD equations is not preserved. 

2.1.4.2 Directional Theta-Weighted Scheme (DTW) 

This scheme uses a direction-based parameter to obtain the weighting factors a, b, 

and c which are restricted to the range 0.5 and 1.0. The DTW scheme uses a direction-

based parameter to obtain an angular flux weighting factor, which ensures positivity of 

the angular flux and removes the oscillations due to the spatial and angular 

discretization.36 The DTW average cell angular flux is given by 
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In the DTW scheme, the weights (ai,j,k,m,g, bi,j,k,m,g, ci,j,k,m,g) are restricted to the range 

between 0.5 and 1.0, approaching second order accuracy when all weights are equal to 

0.5, which is in this case is equivalent to the LD scheme. 
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2.1.4.3 Exponential Directional-Weighted Scheme (EDW) 

The Exponential Directional Weighted (EDW) differencing scheme34, implemented 

in PENTRAN, is a predictor-corrector scheme, which utilizes the DTW to predict a 

solution that is then corrected using an exponential fit. The EDW is an inherently positive 

scheme, and the auxiliary equations derived for this method are given in Eq. 2.24. 

( ) ( ) ( )mkmjmim zPyPxPazyx ξληλµλψ /)(exp/)(exp/)(exp),,( 111= . (2.24) 

The DTW scheme is used to calculate the angular fluxes ( )~ψ  needed for the 

estimation of the coefficients iλ , jλ , and kλ  given in Eqs. 2.25a, b, and c, respectively. 
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≈ ,    (2.25a) 

( )
A

myinyout
j ψ

ηψψ
λ ~2

~~
,, −

≈ ,    (2.25b) 
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A

mzinzout
k ψ

ξψψ
λ ~2

~~
,, −

≈ ,    (2.25c) 

where the subscripts in and out refers to the incoming and outgoing surface averaged 

angular fluxes. The cell-average angular flux formulated with the EDW scheme is given 

in Eq. 2.26. 
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where β is calculated using the coefficients given in Eqs. 2.25a, b, and c.37 
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2.1.5 The Flux Moments 

The flux moments are obtained from the angular fluxes using the following 

formulation 

∑
=

Ψ=
M

m
mlkjimlkji Pw

1
,,,,, )(µφ .    (2.27) 

Note that Eq. 2.27 for l=0 yields the scalar flux. The Associated Legendre moments 

are calculated using Eqs. 2.28 and 2.29. 
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=
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lSkji nPw µµφ ∑

=

Ψ= .   (2.29) 

2.1.6 Boundary Conditions 

Three major boundary conditions can be expressed with a general formula as 

( ) ( )msms rar ',, ΩΨ=ΩΨ
)r)r ,    (2.30) 

where nn mm
))))
⋅Ω−=⋅Ω' . 

Depending on the value of coefficient a, the three boundary conditions are: 

a=1, reflective boundary condition. 

a=0, vacuum or non-reentrant boundary condition. 

a=β, albedo boundary condition. 

2.2 Source Iteration Method 

Due to the integro-differential nature of the transport equation, the solution of the 

multigroup discrete ordinates equations is obtained by means of an iterative process, 

named the source iteration.3 The source iteration method consists of guessing a source 

(i.e., in-group scattering source), then sweeping through the angular, spatial and energy 
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domains of the discretized system with the appropriate boundary conditions. When the 

sweep is completed, integral quantities such as scalar flux and flux moments are obtained 

from the angular fluxes, and then a new in-group scattering source is calculated, and the 

iteration process continues until a convergence criterion, shown in Eq. 2.31, is satisfied. 

Typical tolerances for fixed source calculations range in the order of 1.0e-3 to 1.0e-4. 

.1

1

ε
ψ

ψψ
<

−
−

−

i

ii

    (2.31) 

If fission and/or up-scattering processes are present, outer iterations are performed 

on the fission and transfer scattering sources. Acceleration techniques may be applied 

between source iterations to speed-up the convergence rate by determining a better guess 

for the flux moments and the source. 

2.3 Power Iteration Method 

Criticality eigenvalue problems are solved using the method of power iteration.38 

For this method, it is assumed that the eigenvalue problem has a largest positive 

eigenvalue, k>0, with an associated fission distribution )(rF r that is nonnegative. Hence 

by considering k0>0 and 0)(0 >rF r as initial guesses, we calculate the eigenvalue at 

iteration i as follows 

∫∫
∫∫ +

+ =
)(

)(1
1

rFrddE

rFrddE
kk

i

i
ii

rr

rr

,    (2.32) 

where ),(),()( ErErrF i
f

i rrr φνσ= is the fission source distribution at iteration i. The 

iterative process is continued until the desired convergence is reached, as shown in Eq. 

2.33. 
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Generally, the tolerance required for criticality calculation is 1.0e-4 to 1.0e-6. 

2.4 Acceleration Algorithms for the SN Method 

Many acceleration methods have been proposed to speed-up the convergence of the 

iterative methods used to solve the steady-state transport equation.17 There are a number 

of problems where standard non-accelerated iterative methods converge too slowly to be 

practical. Most of these problems are characterized by optically thick regions with 

scattering ratio near unity. 

The three major acceleration approaches are the Coarse Mesh Rebalance (CMR), 

Multigrid, and Synthetic methods. The CMR approach is based on the fact that the 

converged solution must satisfy the particle balance equation.3 By imposing this balance 

condition on the unconverged solution over coarse regions of the problem domain, it is 

possible to obtain an iteration procedure that usually converges more rapidly to the 

correct solution. However, this method is highly susceptible to the choice of the coarse 

mesh structure and can be unstable. 

The multigrid approach has been used to accelerate the SN calculations; the basic 

principle of the method is to solve the equations on a coarse grid and to project the 

solution onto a finer grid. Different types of multigrid approaches exist, such as “/” Slash-

cycle, V-Cycle and W-Cycle, and the Simplified Angular Multigrid39 (SAM). In Chapter 

8, I will compare the results obtained with the EP-SSN synthetic acceleration and the 

SAM method. 

The synthetic acceleration approach is based on using a lower-order operator, 

generally diffusion theory, as a means to accelerate the numerical solution of the 
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transport equation.17 In the late 1960s, Gelbard and Hageman developed a synthetic 

acceleration method based on the diffusion and the S4 equations.28 Later, Reed 

independently derived a similar synthetic acceleration scheme40 and pointed out some 

limitations of the method derived by Gelbard and Hageman. The synthetic method 

developed by Reed has the advantage of being very effective for small mesh sizes, but it 

is unstable for mesh sizes greater than ~1 mfp (mean free path). Later, Alcouffe 

independently derived the Diffusion Synthetic Acceleration (DSA) method.29 He 

addressed the issue of stability of the method and derived an unconditionally stable DSA 

algorithm. Alcouffe pointed out that in order to obtain an unconditionally stable method, 

the diffusion equation must be derived consistently from the discretized version of the 

transport equation. In this way, the consistency between the two operators is preserved. 

Recently, the DSA method has been found to be ineffective30-32 for 

multidimensional problems with strong heterogeneities, even when a consistent 

discretization of the lower order and transport operators is performed. 
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CHAPTER 3 
ADVANCED QUADRATURE SETS FOR THE SN METHOD 

This chapter covers the development of advanced quadrature sets for solving the 

neutron transport equation via the Discrete Ordinates (SN) method. The level-symmetric 

(LQN) quadrature set is the standard quadrature set for SN calculations; although, as 

discussed in the previous chapter, this quadrature set is limited to order 20. The Equal 

Weight (EW) quadrature set has been proposed to resolve the issue of negative weights; 

this quadrature set is generated by partitioning the unit sphere into M directions, where 

)2( += NNM  and by assigning an equal weight to each direction 
M

wi
1

= .  The EW 

quadrature set yields positive weights for any SN order; however, it does not completely 

satisfy the even-moment conditions given in Eqs. 2-13. 

I have developed and tested new quadrature sets based on the Legendre (PN) and 

Chebyshev (TN) polynomials. In this chapter, I discuss the Legendre Equal-Weight (PN-

EW), the Legendre-Chebyshev (PN-TN) quadrature sets, and the Regional Angular 

Refinement (RAR) technique for local angular refinements. The PN-EW and PN-TN have 

no limitations on the number of directions, and the RAR technique is an alternative to the 

Ordinate Splitting (OS) technique.11 The OS technique has been developed to refine the 

directions of a standard quadrature set using equal-spaced and equal-weight directions, 

while the RAR utilizes the PN-TN quadrature set over a subset of ordinates. The main 

difference between the OS and RAR techniques is in the refining methodology; the OS 

technique focuses on the refinement of each single direction, while the RAR considers a 
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sector of the unit sphere. Also the biased quadrature set generated with RAR satisfies the 

conditions on the odd- and even-moments of the direction cosines (Eq. 2-12 and 2-13). 

To examine the effectiveness of the new techniques for angular quadrature 

generation, each technique has been implemented into the PENTRAN code10 (Parallel 

Environment Neutral-Particle TRANsport), and utilized for a number of problems of 

practical interest. 

3.1 Legendre Equal-Weight (PN-EW) Quadrature Set 

In order to develop a quadrature set which is not limited to order S20, I have 

investigated the Gauss-Legendre quadrature technique.4 This quadrature set is 

characterized by the same arrangement of directions as the LQN, but the directions and 

weights are evaluated differently. Given the SN order for the discrete set of directions, we 

apply the Gauss-Legendre quadrature formula using the following recursive formulation 

11 )12()1( −+ −+=+ jjj jPPjPj ξ , for j = 0, N,   (3.1) 

where 

11 <<− ξ , 0)(1 =− ξP , and 1)(0 =ξP .          (3.2) 

The ξ-levels or polar angles, along the z-axis are set equal to the roots of Eq. 3.1. 

The ξ  values represent the levels of the quadrature set. Once we have evaluated the 

ordinates along the z-axis, we obtain the weights associated with each level using the 

following recursive formulation 

2

2 )1(

2
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, for 
2

,1 Ni = .    (3.3) 
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In order to complete the definition of each discrete direction, the azimuthal angle is 

evaluated on each level by equally partitioning a 90 degree angle into 2
2

+− iN  angular 

intervals, where i=1, N/2. Hence, the weight associated with each direction is given by 

j
w

p i
ji =, , for 

2
...1 Ni = .        (3.4) 

In Eq. 3.4, 1
2

...1 +−= iNj  is the number of directions with equal weights on the ith 

level. Figure 3-1 shows the directions and the associated weights for an S28 PN-EW 

quadrature set on one octant of the unit sphere. 

 
Figure 3-1. S28 PN-EW quadrature set. 

Note that in Figure 3-1, all directions on the same ξ -level have the same weight, as 

indicated by the color. 

3.2 Legendre-Chebyshev (PN-TN) Quadrature Set 

In the PN-TN quadrature set, similar to PN-EW, we choose the ξ-levels on the z-axis 

equal to the roots of the Gauss-Legendre quadrature formula given in Eqs. 3.1 and 3.2; 

however, the azimuthal angles on each level are set equal to the roots of the Chebyshev 
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(TN) polynomials of the first kind. Chebyshev polynomials of the first kind are 

formulated as follows 

( )[ ] ( )ωω lTl coscos ≡ .     (3.5) 

The Chebyshev polynomials are orthogonal and satisfy the following conditions 
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   (3.6) 

Again, using the ordering of the LQN quadrature set, we define the azimuthal 

angles on each level using the following formulation 

22
122

,
πω 





 +−

=
i
ji

ji ,    (3.7) 

where 





∈

2
,0,
πω ji  and i=1, N/2. 

In Eq. 3.7, i is the level number and 1
2

...1 +−= iNj . The level and point weights are 

generated in the same way as for the PN-EW. Note that both PN-EW and PN-TN 

quadrature sets do not present negative weights for SN orders higher than 20. 

Figure 3-2 shows the directions and the associated weights for an S28 PN-TN 

quadrature set on one octant of the unit sphere. 
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Figure 3-2. S40 PN-TN quadrature set over the unit sphere. 

3.3 The Regional Angular Refinement (RAR) Technique 

The RAR method is developed for solving problems with highly peaked angular 

fluxes and/or sources. The approach consists of two steps. In the first step, we derive a 

PN-TN quadrature set of arbitrary order on one octant of the unit sphere, as described in 

Section 3.2. 

In the second step, we define the area (angular segment) of the octant to be refined 

along with the order (N’) of the PN’-TN’ quadrature set to be used in this region. The area 

to be refined is characterized by the polar range (ξmin, ξmax) and the azimuthal range (φmin, 

φmax). Generally, the biased region is selected based on the physical properties of the 

model. For example, if a directional source is forward peaked along the x-axis, the 

quadrature set will be refined on the pole along the x-axis. 

The ξ-levels of the PN’-TN’ quadrature set are calculated using Eqs. 3.1 and 3.2; 

therefore, they are mapped onto the (ξmin, ξmax) sub-domain using the following formula: 







 +

+





 −

=
22

~ minmaxminmax ξξ
ξ

ξξ
ξ ii , for i=1, N’/2.   (3.8) 
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Hence, the azimuthal angles are evaluated using the Chebyshev polynomials as 

follows 







 +

+





 −






 +−

=
22'
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ji ,   (3.9) 

where 





∈

2
,0,
πω ji , i=1, N’/2 and j=1, N’/2. 

The number of directions in the refined region is equal to
2

2
'






 N . The weights in the 

refined region are renormalized to preserve the overall normalization on the unit sphere. 

Figure 3-3 shows the RAR technique applied to an S16 PN-TN quadrature set. In the 

biased region, which extends from ξ=0.0 to ξ=0.2 along the z-axis, and from φ=0º to 

φ=10º on the azimuthal plane, an S10 PN-TN quadrature set is fitted. 

 
Figure 3-3. PN-TN quadrature set (S16) refined with the RAR technique. 

3.4 Analysis of the Accuracy of the PN-EW and PN-TN Quadrature Sets 

The main advantage of the LQN technique is the fact that it preserves moments of 

the direction cosines, thereby leading to an accurate solution. The PN-EW and PN-TN 
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quadrature sets attempt to preserve these quantities independently along the µ-, η-, and ξ-

axes. 

Therefore, I verified the capability of the new quadrature sets in preserving the 

even moments of the direction cosines, which are directly related to the accuracy of the 

quadrature set. Table 3-1 compares the even-moments of the direction cosines calculated 

with an S30 PN-EW quadrature set with the exact value. 

Table 3-1.  Even-moments obtained with a PN-EW S30 quadrature set. 
Moment 

Order 
(n even) 

∑
=

M

i

n
iiw

1

µ  ∑
=

M

i

n
iiw

1

η  ∑
=

M

i

n
iiw

1

ξ  
Exact value 








+ n1
1  

2 0.333333333 0.333333333 0.333333333 0.333333333 
4 0.194318587 0.194318587 0.2 0.2 
6 0.135907964 0.135907964 0.142857143 0.142857143 
8 0.103874123 0.103874123 0.111111111 0.111111111 
10 0.083691837 0.083691837 0.090909091 0.090909091 
12 0.06983611 0.06983611 0.076923077 0.076923077 
14 0.059749561 0.059749561 0.066666667 0.066666667 
16 0.052087133 0.052087133 0.058823529 0.058823529 
18 0.046074419 0.046074419 0.052631579 0.052631579 
20 0.041234348 0.041234348 0.047619048 0.047619048 
22 0.037257143 0.037257143 0.043478261 0.043478261 
24 0.033932989 0.033932989 0.043478261 0.043478261 
26 0.031114781 0.031114781 0.037037037 0.037037037 
28 0.028696358 0.028696358 0.034482759 0.034482759 
30 0.026599209 0.026599209 0.032258065 0.032258065 

 
As expected, the PN-EW preserves exactly the even-moments conditions along the 

ξ-axis, while on the µ-, η-axes these conditions are only partially preserved; the 

maximum relative difference between the even-moments calculated with PN-EW and the 

exact solution is 17.0%. 

Table 3-2 shows the comparison of the even-moments evaluated with an S30 PN-TN 

quadrature set and the exact value. 
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Table 3-2.  Even-moments obtained with a PN-TN S30 quadrature set. 
Moment 

Order 
(n even) 

∑
=

M

i

n
iiw

1
µ  ∑

=

M

i

n
iiw

1
η  ∑

=

M

i

n
iiw

1
ξ  

Exact value 








+ n1
1  

2 0.333333333 0.333333333 0.333333333 0.333333333 
4 0.199999962 0.199999962 0.2 0.2 
6 0.142857143 0.142857143 0.142857143 0.142857143 
8 0.111111111 0.111111111 0.111111111 0.111111111 
10 0.090909091 0.090909091 0.090909091 0.090909091 
12 0.076923077 0.076923077 0.076923077 0.076923077 
14 0.066666667 0.066666667 0.066666667 0.066666667 
16 0.058823529 0.058823529 0.058823529 0.058823529 
18 0.052631579 0.052631579 0.052631579 0.052631579 
20 0.047619048 0.047619048 0.047619048 0.047619048 
22 0.043478261 0.043478261 0.043478261 0.043478261 
24 0.043478261 0.043478261 0.043478261 0.043478261 
26 0.037037037 0.037037037 0.037037037 0.037037037 
28 0.034482759 0.034482759 0.034482759 0.034482759 
30 0.032258065 0.032258065 0.032258065 0.032258065 

 
It is clear from Table 3-2 that the PN-TN quadrature set completely satisfies the 

even-moment conditions. This is possible because both roots of Legendre and Chebyshev 

polynomials satisfy the even-moment conditions given by Eqs. 2.13. 

In order to further verify the accuracy of the PN-EW and PN-TN quadrature sets, and 

to check their accuracy, I used a simple test problem, consisting of a homogeneous 

parallelepiped, where an isotropic source is placed in its lower left corner as shown in 

Figure 3-4. 

Due to the symmetry of the problem, it is expected that the particle currents 

flowing out of regions A and B (see Figure 3-4) have the same value. 
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Figure 3-4. Configuration of the test problem for the validation of the quadrature sets. 

Figure 3-5 shows the relative difference between the particle current in regions A 

and B for the EW, PN-EW, and PN-TN as compared to the LQN technique. 
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Figure 3-5. Relative difference between the currents Jx and Jz for the test problem. 

Level-symmetric is considered as the reference because it preserves moments of 

both azimuthal and polar direction cosines. The PN-TN yields almost perfect symmetry, 

while the PN-EW and Equal Weight show maximum relative differences of 4% and 10%, 

respectively. It is worth noting that the loss in accuracy of the EW quadrature set is 

attributed to the fact that the even-moment conditions are not satisfied. The PN-EW yields 
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higher accuracy compared to EW, because the even-moment conditions are satisfied 

along the z-axis. 

3.5 Testing the Effectiveness of the New Quadrature Sets 

In this section, the effectiveness of the new quadrature sets is examined by 

simulating two test problems: Kobayashi benchmark problem 3 and a CT-Scan device for 

industrial/medical imaging applications. 

 3.5.1 Kobayashi Benchmark Problem 3 

To examine the effectiveness of the new quadrature sets, I have used the first axial 

slice of the Kobayashi43 3-D benchmark problem 3 with pure absorber. Figures 3-6 show 

two different mesh distributions: Figure 3-6A is obtained from a previous study42, where 

an appropriate variable mesh was developed; Figure 3-6B shows a uniform mesh 

distribution that I have developed for the current study. The uniform mesh is used in 

order to separate the effects of the angular discretization from the spatial discretization. 

The reference semi-analytical solutions are evaluated in two spatial zones shown in 

Figures 3-6A and 3-6B (zone 1 ≡ along y-axis, at every 10.0 cm intervals between 5.0 

and 95.0 cm; zone 2 ≡ along x-axis, y = 55.0 cm, every 10.0 cm, between 5.0 cm and 55.0 

cm). 

 

 

 

 

 

 



39 

 

A 
 

 

B 
 

 
Figure 3.6. Mesh distribution for the Kobayashi benchmark problem 3: A) Variable mesh 

distribution; B) Uniform mesh distribution. 

Figure 3-7 shows the ratio of the calculated to the exact solution (C/E) for the level-

symmetric, PN-EW and PN-TN quadrature sets of order 20 for zone 1. Also, in this figure, 

I present a solution34 obtained in a previous study which uses the variable mesh 

distribution shown in Figure 3-6a. In the previous study, by taking advantage of the 

variable mesh distribution, the solution obtained with the level-symmetric quadrature set 

presented a maximum relative error of ~6% in zone 1. In the current study, the solution 

obtained with the level-symmetric quadrature set and uniform spatial mesh yields a 

maximum relative error of ~10% in zone 1.  

In zone 1, the PN-EW and PN-TN quadrature sets underestimate the scalar flux by 

~51.9% and ~8.5%, respectively, on the last point of zone 1; this is due to the fact that the 

PN-EW quadrature set has fewer directions clustered around the y-axis as compared to the 

PN-TN and level-symmetric quadrature sets. 
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Figure 3-7. Comparison of S20 quadrature sets in zone 1 at x=5.0 cm and z=5.0 cm. 

Figure 3-8 compares the scalar flux obtained in zone 2 of the benchmark problem. 

While using a uniform spatial mesh, the PN-TN quadrature set yields slightly better results 

compared to level-symmetric. 
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Figure 3-8. Comparison of S20 quadrature sets in zone 2 at y=55.0 cm and z=5.0 cm. 

In zone 2, the maximum relative error obtained with PN-TN is ~18.6%, while for 

level-symmetric it is ~21.9% using the uniform mesh distribution, and ~6% using 

variable meshing. However, an error of ~28.2% is observed for the PN-EW quadrature 

set. 

Figures 3-9 and 3-10, show the solutions obtained with the PN-EW quadrature set 

for different SN orders compared to level-symmetric S20, in zone 1 and 2 respectively. 
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Figure 3-9. Comparison of PN-EW quadrature sets for different SN orders in zone 1 at 

x=5.0 cm and z=5.0 cm. 
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Figure 3-10. Comparison of PN-EW quadrature sets for different SN orders in zone 2 at 

y=55.0 cm and z=5.0 cm. 

In zone 1 (Figure 3-9), the PN-EW is not as accurate as level-symmetric, because 

fewer directions are clustered near the y-axis; however in zone 1, the solution improves 

somewhat by increasing the SN order. In zone 2 (Figure 3-10) the PN-EW set yields 

inaccurate results, with a maximum relative error of ~36% for the S20 case. 

Figure 3-11 compares the ratios of different computed solutions to the exact 

solution; the computed solutions wered obtained with the PN-TN quadrature set for orders 

S20, S22, S24, S26 and with the S20 level-symmetric quadrature set. It appears that the 

increase in the quadrature order does not have a noticeable effect in improving the 
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accuracy. However, this behavior can be attributed to the fact we have retained the same 

spatial mesh discretization. 
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Figure 3-11. Comparison of PN-TN quadrature sets for different SN orders in zone 1 at 

y=5.0 cm and z=5.0 cm. 

In zone 2 (Figure 3-12), the solution obtained with an S22 PN-TN quadrature set is 

more accurate than what obtained with level-symmetric. The S22 PN-TN yields a 

maximum relative error of ~9% compared to ~22% from level-symmetric. Again, in zone 

2, the accuracy somewhat decreases as the SN order increases, because the spatial mesh is 

not consistently refined. 
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Figure 3-12. Comparison of PN-TN quadrature sets for different SN orders in zone 2 at 

y=55.0 cm and z=5.0 cm. 
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3.5.2 CT-Scan Device for Medical/Industrial Imaging Applications 

The model of a CT-Scan device used for medical/industrial applications is used in 

this section to verify the accuracy and performance of the RAR technique. A CT-Scan 

device utilizes a collimated x-ray source (fan-beam) to scan an object or a patient. The 

main components of a CT-Scan device are an x-ray source mounted on a rotating gantry 

and an array of sensors. The patient is positioned on a sliding bed that is moved inside the 

CT-Scan. The mesh distribution for this model, is shown in Figure 3-13. 

 
Figure 3-13. Cross-sectional view of the CT-Scan model on the x-y plane. 

Figure 3-13 shows the simplified PENTRAN model which represents the x-ray 

directional source (“fan” beam), a large region of air and an array of sensors. The size of 

this model is 74 cm along the y-axis and 20 cm along the x-axis. The array of detectors is 

located at 72 cm from the source along the x-axis. 

The materials are described using one-group cross-sections from the 20-group 

gamma of the BUGLE-96 cross-sections library.  The group corresponds to an x-ray 

source emitting photons in an energy range of 100 KeV to 200 KeV. The cross-sections 

were prepared using a P3 expansion for the scattering kernel. 

Because of the presence of large void regions and a directional source, the solution 

of the transport equation is significantly affected by the ray-effects.3 One remedy is to use 
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high order quadrature sets with biasing, such as RAR. We compared the solutions 

obtained with an S50 PN-TN quadrature set. The RAR technique has been applied to an S30 

PN-TN quadrature set; the biased region on the positive octant extends from z=0.0 cm to 

z=0.3 cm and the azimuthal angle extends from 0.0 to 5.0 degrees. In the biased region an 

S10 PN-TN quadrature set is used. The PN-TN quadrature set biased with RAR resulted in 

142 directions per octant. The unbiased S50 PN-TN quadrature set yielded 325 directions 

per octant. The S20 level-symmetric quadrature set yielded 55 directions per octant. 

Figures 3-14, 3-15, and 3-16 show the flux distributions in the x-y plane, obtained 

with the level-symmetric S20, S50 PN-TN and S30 PN-TN with RAR, respectively. 

 
Figure 3-14. Scalar flux distribution on the x-y plane obtained with an S20 level-

symmetric quadrature set. 

 
Figure 3-15. Scalar flux distribution on the x-y plane obtained with an S50 PN-TN 

quadrature set. 
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Figure 3-16. Scalar flux distribution on the x-y plane obtained with an S30 PN-TN 

quadrature set biased with RAR. 

The above results indicate that the level-symmetric quadrature set exhibits 

significant ray-effects, while S50 PN-TN and S30 PN-TN with RAR quadrature sets, yield 

similar solutions without any ray-effects. The main advantage of using a biased 

quadrature set is the significant reduction in computational cost and memory requirement. 

Table 3-3 compares the CPU time and memory requirements for the three calculations 

presented above. 

Table 3-3. CPU time and total number of directions required for the CT-Scan simulation. 
Quadrature Set Directions CPU 

Time(sec) 
Memory ratioa Time ratioa 

S50 PN-TN 2600 166.4 1.0 1.0 
S30 PN-TN RAR (S10) 1136 79.4 0.51 0.47 

S20 LQN 440 33.3 0.2 0.2 
a memory and time ratio are referred to the S50 PN-TN quadrature set. 

The RAR technique lessens the ray effect in the flux distribution and greatly 

reduces the computational time by more than a factor of 2 compared to S50. 

The new quadrature sets biased with the OS rather than the RAR technique have 

also been examined based on the CT-Scan model.9 Figure 3-17 compares the results of 

PENTRAN with a reference Monte Carlo solution. For all cases, the first direction of the 
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lowest level in quadrature set is split in 9 or 25 directions; for example, PN-TN 22-2-55 

corresponds to PN-TN S22 with direction 55 split in 9 directions. All the quadrature sets 

biased with the OS technique yield accurate results within the statistical uncertainty of 

the Monte Carlo predictions.  

Due to the significant ray-effects, the level-symmetric S20 quadrature set without 

ordinate splitting yields poor accuracy. Note that, even by using high order quadrature 

sets, such as PN-TN S28 (840 directions), the solution at detector position is under 

predicted by ~21%. 
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Figure 3.17. Comparison of the scalar flux at detector position (x=72.0 cm). 
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CHAPTER 4 
DERIVATION OF THE EVEN-PARITY SIMPLIFIED SN EQUATIONS 

This chapter presents the initial derivation of the Simplified Spherical Harmonics 

(SPN) equations starting from the PN equations in 1-D geometry, and it discusses the 

issues related to the coupling of the SPN moments on the vacuum boundary conditions. 

Because of this peculiarity, the implementation of the general SPN equations into a 

computer code proved to be cumbersome. However, I will present the initial derivation of 

the SP3 equations, successively implemented into a new computer code named PENSP3 

(Parallel Environment Neutral-particles SP3). 

To overcome the difficulties related to the coupling of the SPN moments in the 

vacuum boundary conditions, I adopted a different formulation based on the Even-Parity 

Simplified SN (EP-SSN) equations. These equations are derived starting from the 1-D SN 

equations, and using the same assumptions made for the derivation of the SPN equations; 

however, the main advantage of this formulation is the natural decoupling of the even-

parity angular fluxes for the vacuum boundary conditions. 

Therefore, a Fourier analysis of the EP-SSN equations will follow, along with the 

derivation of a new formulation to accelerate the convergence of the source iteration 

method applied to the EP-SSN equations. This chapter is concluded with the derivation of 

the 3-D P1 equations. I will compare the P1 equations with the SP1 equations, and I will 

describe the assumptions made in the derivation of the SP1 equations and the relation 

with the spherical harmonics P1 formulation. 
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4.1 Derivation of the Simplified Spherical Harmonics (SPN) Equations 

The SPN equations were initially proposed by Gelbard18 in the early 1960s.   

However, they did not receive much attention due to the weak theoretical support. 

Recently, the theoretical foundations of the SPN equations have been significantly 

strengthened using a variational analysis approach.21-22 

I derive the multigroup SPN equations starting from the 1-D multigroup PN 

equations and by applying the procedure originally outlined by Gelbard. The multigroup 

1-D PN equations are given by 
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In Eqs. 4.1 and 4.2, I defined the following quantities: 

)(, xgtσ , total macroscopic cross-section in group g. 
)(, xggsn →σ , Legendre moment of the in-group macroscopic scattering cross-section of 

order n. 
)(', xggsl →σ , Legendre moment of the group transfer macroscopic scattering cross-section 

of order l. 
)(, xgnφ , Legendre moment of the angular flux of order n. 
)(, xq gf , fission source. 

)(, xS ext
gn , Legendre moment of the inhomogeneous source of order n. 

G, total number of energy groups and 
L, order of the Legendre expansion of the macroscopic scattering cross-section (L<N). 
 
 

 



49 

 

In Eq. 4.1, the angular flux is expanded in terms of Legendre polynomials as 
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In Eq. 4.1, the term 
dx

d gN ,1+φ
 is defined to be identically zero when n=N. This 

assumption closes the PN equations, yielding N+1 equations with N+1 unknowns. The 

procedure prescribed by Gelbard to obtain the 3-D SPN equations from the 1-D PN, 

consists of the following steps: 

4. Replace the partial derivative operator in Eq. 4.1 for even n with the divergence 
operator )( ⋅∇

r
. 

5. Replace the partial derivative operator in Eq. 4.1 for odd n with the gradient 
operator )(∇

r
. 

 
By applying this procedure to Eq. 4.1, it reduces to 
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for n=0,2,…,N-1, g=1, G, and Vr ∈r , 
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      for n=1,3,…,N, g=1, G, and Vr ∈r . 

The SPN equations can be reformulated in terms of a second-order elliptic operator, 

if one solves for the odd-parity moments using Eqs. 4.4b , i.e., 
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and then substitute Eqs. 4.5 into Eqs. 4.4a to obtain 
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for n=0,2,…,N-1 and g=1, G. 

Note that for simplicity, the spatial dependency of φ  has been eliminated. The SPN 

equations yield a system of (N+1)/2 coupled partial differential equations that can be 

solved using standard iterative methods, such as Gauss-Seidel or Krylov subspace 

methods. The main disadvantage of this formulation is that it yields Marshak-like 

vacuum boundary conditions, coupled through the moments. Because of this issue the 

implementation of this formulation into a computer code becomes cumbersome. 

However, to study the effectiveness of the SPN method, I developed a 3-D parallel SP3 

code,25 PENSP3 (Parallel Environment Neutral-particles SP3). The PENSP3 code is based 

on Eqs. 4.8a and 4.8b, which are derived assuming isotropic scattering and isotropic 

inhomogeneous source. 
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for g=1, G, 

where 
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The SP3 Marshak-like vacuum boundary conditions for Eqs. 4.8a and 4.8b are given by 
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Eqs. 4.10a and 4.10b are termed Marshak-like boundary conditions, because in 1-D 

geometry they reduce to standard Marshak boundary conditions. Implementation of these 

formulations into a computer code is difficult because of the coupling of the SPN 

moments. 

The reflective boundary condition is represented by setting the odd-moments equal 

to zero on the boundary, i.e., 

0)(ˆ , =⋅ bgn rn rr
φ , for n odd,    (4.11) 

where Vrb ∂∈
r  and n̂  is the normal to the surface considered. 

4.2 Derivation of the Even-Parity Simplified SN (EP-SSN) Equations 

I have derived the Even-Parity Simplified SN (EP-SSN) equations starting from the 

1-D SN equations given by 
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A Gauss-Legendre symmetric quadrature set (PN) is considered, where )1,1(−∈mµ , 

0.2
1

=∑
=

M

m
mw , and M=N(N+2). In Eq. 4.13, L is the order of the Legendre expansion for 

both the macroscopic scattering cross-section and the inhomogeneous source (L<N). 

Therefore, the even- and odd-parity angular fluxes are defined by 
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To reformulate the 1-D SN equations in terms of the even- and odd-parity angular 

fluxes, I rewrite Eq. 4.12 for mµ− as 
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Then, I add Eqs. 4.12 and Eq. 4.16 to obtain 
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and use the definitions of even- and odd-parity angular fluxes (given  by Eqs. 4.15a and 

4.15b), to obtain 
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Consider the following identities for the Legendre polynomials.3 

)()( µµ ll PP =− , for l even,      (4.19a) 
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)()( µµ ll PP −=− , for l odd.      (4.19b) 

Eq. 4.18 can be rewritten as 
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Similarly, by subtracting Eq. 4.16 from Eq. 4.12, I obtain 
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and by using the definitions of even- and odd-parity angular fluxes, I obtain 
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Following the use of the Legendre polynomial identities (Eqs. 4.19a and 4.19b), Eq. 4.22 

reduces to 
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Now, the odd-parity angular fluxes are then obtained from Eq. 4.23 as 
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Then, using Eq. 4.24 in Eq. 4.20, I obtain 
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Finally, the EP-SSN equations in 3-D Cartesian geometry with anisotropic 

scattering kernel and anisotropic inhomogeneous source of arbitrary order L, are obtained 

by applying the procedure outlined by Gelbard (i.e., substitution of first order partial 

differential operators with the gradient operator) to Eq. 4.25. 
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for m=1, N/2, 

where 
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Due to the symmetry of the Gauss-Legendre quadrature set, the EP-SSN equations 

only need to be solved on half of the angular domain, e.g. ( )1,0∈µ . The moments of the 

even- and odd-parity angular fluxes are evaluated by 
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= ψµφ , for l even,    (4.28a) 

and 
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1
rPwr

N

m

O
mmlml
rrrr

∑
=

= ψµφ , for l odd.    (4.28b) 

The multigroup form of Eqs. 4.26 and 4.27 with anisotropic scattering and source 

are written as 
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and 
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for m=1, N/2 and g=1, G. 

4.2.1 Boundary Conditions for the EP-SSN Equations 

The boundary conditions for the EP-SSN equations are based on the assumption that 

the angular flux on the boundary surface is azimuthally symmetric about the surface 

normal vector. The EP-SSN boundary conditions follow directly from the 1-D even-parity 

SN boundary conditions. Hence, by considering the positive half of the angular domain 

for the EP-SSN equations, the 1-D source boundary condition at the right boundary face is 

given by 

),(),(),( msms
O

ms
E xxx µψµψµψ −=− ,    (4.31) 

and the corresponding condition in 3-D is given by 

),(),(),( msms
O

ms
E rrnr µψµψµψ −=⋅−

rrrrr .     (4.32) 
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Note that in 3-D geometry, the EP-SSN formulation requires the incoming boundary 

flux to be azimuthally symmetric about the surface normal vector. The 3-D albedo 

boundary condition is given by 

),(
1
1),( ms

E
ms

O rrn µψ
α
αµψ rrrr

+
−

=⋅ .     (4.33) 

Note that in Eq. 4.33, the vacuum boundary condition is obtained by setting 0=α  

while the reflective boundary condition is obtained by setting 1=α . 

Note that the main advantage of the EP-SSN formulation compared to SPN is the 

decoupling of the even-parity angular fluxes for the vacuum boundary conditions. 

4.2.2 Fourier Analysis of the EP-SSN Equations 

The EP-SSN equations are solved iteratively using the source iteration method. This 

method is based on performing iterative cycles on the scattering source; moreover, the 

method has a clear physical interpretation that allows one to predict classes of problems 

where it should yield fast convergence. The source iteration method for the EP-SSN 

equations is defined by 

')()( ,,
1,

,,, qqrrH l
ggms

lE
gmgmL += →
+ rr ψ , for m=1, N/2 and g=1, G,  (4.34) 

where, gmLH ,,  is the EP-SSN leakage plus collision operator, l
ggmsq →,,  is the in-group 

scattering source, and 'q  is a fixed source term that includes scattering transfers from 

energy groups other than g, the external source and fission sources. The iterative method 

begins by assuming a flux guess; then, Eq. 4.34 is solved for 1,
,
+lE

gmψ  and the in-group 

scattering source is updated. This process continues until a certain convergence criterion 

is satisfied. 
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The convergence rate of any iterative method is characterized by the spectral 

radius. For the source iteration method, in an infinite homogeneous medium, it is well 

known that the spectral radius is equal to the scattering ratio (c), given by 

gt

ggs
gc

,

,

σ
σ →= .      (4.35) 

The scattering ratio is bounded between 0 and 1; hence, a c-ratio approaching one 

means that the problem will converge slowly, while, oppositely, a c-ratio close to zero, 

indicates a fast converging problem. 

Fourier analysis is the tool of choice to analyze the convergence behavior of 

iterative methods. For simplicity, I will consider the 1-D EP-SSN equations with isotropic 

scattering and source, given by 
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which following division by )(xtσ , reduces to 
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where c is the scattering ratio defined by Eq. 4.35. 

The EP-SSN equations can be rewritten in terms of the error between two 

consecutive iterations as 
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where 
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l −++ −= ,   (4.39) 

and 
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)()()( 1,0,0,0 xxx lll −−= φφδ .    (4.40) 

The error terms are then expanded in terms of the Fourier modes, considering an 

infinite homogeneous medium, the Fourier ansatz is defined as follows 

)exp()(),(2/1 xifxE
l λµµε =+ , and )exp()(,0 xixl λδ = ,   (4.41) 

where 

1−=i  and ( )∞∞−∈ ,λ .      

By substituting the above relations into Eq. 4.38, I obtain the EP-SSN equations 

mapped onto the frequency domain, resulting in function )(µf  given by 
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Therefore, the spectrum of eigenvalues is obtained by observing that the error in the 

scalar flux at iteration l+1 can be written as 
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By performing the integration over the angular variable in Eq. 4.43, the spectrum of 

eigenvalues is found to be equal to 

( )
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λω









=
arctan

.     (4.44) 

The result obtained in Eq. 4.44 is similar to what is obtained for the SN equations. 

The spectral radius is found to be equal to [ ] c== )(max λωρ . However, the convergence 

behavior of the EP-SSN equations is also affected by the value of the total scattering 
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cross-section. For optically thin media, where the total cross-section assumes small 

values, Eq. 4.44 suggests that the convergence should be very fast, and in the limit as 

0→tσ , the spectral radius will tend to zero. 

4.2.3 A New Formulation of the EP-SSN Equations for Improving the Convergence 
Rate of the Source Iteration Method 

As discussed in the previous paragraph, the performance of the source iteration 

method applied to the EP-SSN equations is similar to the SN equations. However, I have 

derived a new formulation of the EP- SSN equations which reduces the spectral radius for 

the source iteration method. Appendix B addresses the performance of the new 

formulation for a criticality eigenvalue benchmark problem; note that the new 

formulation is a key aspect for the successful implementation of an acceleration method 

for the SN equations. The main idea behind the new formulation is to remove the in-group 

component of the scattering kernel for each direction. In order to reformulate the EP- SSN 

equations, we note that the even-moments in the in-group portion of the scattering kernel 

can be expanded as follows 
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           (4.45) 

The term )(, rE
gm
rψ  is consistently removed from the in-group portion of the 

scattering kernel and from the collision term on the left-hand side of the EP- SSN 

equations. 
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for m=1, N/2 and g=1, G.     (4.46) 

Note that in Eq. 4.46, the total cross-section is replaced, in the collision term, with 

a direction-dependent removal cross-section as follows 
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In this new formulation, the main idea is to remove a “degree of freedom” from the 

iteration process in order to reduce the iterations on the component )(, rE
gm
rψ . This 

modification leads to a drastic reduction of the spectral radius. 

4.3 Comparison of the P1 Spherical Harmonics and SP1 Equations 

In order to understand the assumptions on which the SPN and the EP-SSN equations 

are based, it is useful to examine the 3-D P1 spherical harmonics equations.6 The 

expansion in spherical harmonics of the angular flux can be written as follows 

( ) [ ]∑∑
= =

++=Ω
N

l

l

m
lmlm

m
l mrmrPlr

0 0

)sin()()cos()()(cos)12(ˆ, ϕγϕψϑψ rrr ,  (4.48) 

where 

πϑ <<0  , and πϕ 20 << . 

In the following discussion, for simplicity I will assume a P1 expansion of the 

angular flux in spherical harmonics, given by 
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0 rrPrPrPr rrrrr
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(4.49) 

By substituting the definitions of the Associated Legendre polynomials6 in Eq. 

4.49, I obtain the P1 expansion for the angular flux: 

( ) [ ]ϕγϕψϑµψψψ sin)(cos)(sin3)(3)(ˆ, 11111000 rrrrr rrrrr
+−+=Ω ,  (4.50) 

where 

ϑµ cos= . 

The derivation of the SPN equations outlined by Gelbard, assumes implicitly that 

the angular flux be azimuthally independent, and hence symmetric with respect to the 

azimuthal variable. By introducing this assumption on the P1 expansion of the angular 

flux in Eq. 4.50, I obtain 

( ) ( ) [ ] ϕϕγϕψϑµψψϕψµψ
ππ

drrrrdrr ∫∫ +−+=Ω=
2

0 11111000

2

0
sin)(cos)(sin3)(3)(ˆ,,~ rrrrrr . 

(4.51) 

Therefore, by performing the integration on Eq. 4.51, I obtain 

( ) )(3)(,~
1000 rrr rrr µψψµψ += .    (4.52) 

It is evident that the angular flux obtained in Eq. 4.52 is equivalent to the SP1 

angular flux where, 00ψ  is the scalar flux and 10ψ  is the total current. 

The general formulation of the multigroup PN equations6, with anisotropic 

scattering and source, is obtained by substituting Eq. 4.48 into the linear Boltzmann 

equation and deriving a set of coupled partial differential equations for the moments 

)(rg
lm
rψ and )(rg

lm
rγ . 
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(4.53b) 

for g=1, G, 

where 

ggslgtgl →−= ,,, σσσ . 

Therefore, the P1 equations are obtained by evaluating Eqs. 4.53a and 4.53b for 

l=0, 1 and m=0, 1, as follows 
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(l=1, m=1) 
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The terms with l>1 and m>1 are dropped from Eqs. 4.54c through f, yielding the 

following relationships 
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Then, by substituting Eqs. 4.55a, c and d in Eq. 4.54a, I obtain 
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Analogously, by using Eqs. 4.55b, c and d in Eq. 4.54b, I obtain 
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Eqs. 4.56 and 4.57 constitute a coupled system of partial differential equations for 

g
00ψ  and g

00γ , which must be solved iteratively. Recall that the assumption made in the 

SPN methodology is that the angular flux is azimuthally symmetric; therefore, to obtain 

the SP1 equations (Eq. 4.58 or 4.59), terms such as g
00γ are dropped from Eqs. 4.56 and 

4.57, as follows 
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Here, I can also conclude that in the case of a homogeneous medium, with isotropic 

scattering, the P1 and the SP1 equations yield the same solution, because the azimuthal 

dependency on the angular flux is removed. Note that this result can also be generalized 

to the SPN equations. 
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CHAPTER 5 
NUMERICAL METHODS FOR SOLVING THE EP-SSN EQUATIONS  

This chapter addresses the numerical techniques utilized to solve the EP-SSN 

equations; I will describe the discretization of the EP-SSN equations in a 3-D Cartesian 

geometry using the finite-volume method, along with the matrix operator formulation 

utilized and the boundary conditions. I will also introduce the Compressed Diagonal 

Storage (CDS) method, which is fundamental for reducing the memory requirements and 

the computational complexity of the iterative solvers. Further, a new coarse mesh based 

projection algorithm for elliptic-type partial differential equations will be presented. 

Finally, I will describe a class of iterative solvers based on the Krylov subspace 

methods, such as the Conjugate Gradient (CG) and the Bi-Conjugate Gradient methods 

(Bi-CG). The CG and Bi-CG methods have been implemented to solve the linear systems 

of equations arising from the finite-volume discretization of the EP-SSN equations. 

Furthermore, the issue of preconditioning of the CG methodology will be discussed. 

5.1 Discretization of the EP-SSN Equations Using the Finite-Volume Method 

The EP-SSN equations derived in Chapter 4 are discretized using the finite-volume 

approach. For this purpose, I consider a general volume V in a 3-D Cartesian geometry. 

The volume V is then partitioned into non-overlapping sub-domains Vj, called coarse 

meshes. Note that, the coarse mesh sub-domains are generally defined along the 

boundaries of material regions. As I will discuss in Chapter 7, the main purpose of this 

approach is to partition the problem for parallel processing. 
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The discretization of the spatial domain is completed by defining a fine-mesh grid 

onto each coarse mesh. I have derived a formulation of the discretized EP-SSN equations 

which allows for variable fine mesh density on different regions of the problem; this 

approach is very effective to generate an effective mesh distribution, because it allows a 

finer refinement only in those regions where higher accuracy is needed. 

The finite-volume discretization of the multigroup EP-SSN equations (Eqs. 4.29) is 

obtained by performing a triple integration on a finite volume, dxdydzdr ≡ , as follows 
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For this derivation, I consider a central finite-difference scheme for generic mesh 

element with coordinates xi, yj and zk; an example of a fine mesh element and its neighbor 

points is shown in Figure 5.1. 
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Figure 5.1. Fine mesh representation on a 3-D Cartesian grid. 

The generic fine mesh element is defined by the discretization step sizes, cx∆ , cy∆ , 

and cz∆ , along the x-, y- and z-axis, respectively. Note that the discretization steps are 

constant within each coarse mesh; hence, a non-uniform mesh distribution is not allowed. 

The discretization steps are defined as follows 

c
x

c
x

c N
L

x =∆ , c
y

c
y

c N
L

y =∆ , c
z

c
z

c N
Lz =∆ , and cccc zyxv ∆∆∆=∆ ,      (5.2) 

for c=1, Ncm 

where, Ncm  is the total number of coarse meshes; c
xL , c

yL , and c
zL  are the dimensions of 

the coarse mesh (c), along the x-, y- and z-axis, respectively; and c
xN , c

yN , and c
zN  refer 

to the number of fine meshes along the x-, y- and z-axis, respectively. Note that, Eq. 5.1 is 

numerically integrated on a generic finite volume cv∆ . 

I will first consider the integration of the elliptic or leakage operator (first term in 

Eq. 5.1) as follows 

(i, j, k) (i+1, j, k) (i-1, j, k) 

(i, j+1, k) 

(i, j-1, k) 

(i, j, k+1) 

(i, j, k-1) x
y 

z
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For simplicity, I will derive the discretized operator along the x-axis; the treatment 

is analogous along the y- and z-axis. Figure 5.2 represents the view of a fine mesh and its 

neighbor points along the x-axis. 

 
Figure 5.2. View of a fine mesh along the x-axis. 

In Figure 5.2, xσ  represents a generic macroscopic cross-section (e.g., total, 

fission, etc.) which is constant within the fine mesh. In Eq. 5.3, I evaluate the right-side 

and left-side partial derivatives along the x-axis at 2/1+ix . 

xi xi+1xi-1 xi+1/2 xi-1/2 

ix,σ 1, +ixσ1, −ixσ  

x 

cx∆
2/cx∆2/cx∆
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In order for the elliptic operator to be defined, the function ),,(, zyxE
gmψ must be 

continuous along with its first derivative ),,(, zyxf E
gm and second derivative, which 

translates into the fact that the even-parity angular flux belongs to a C2 functional space, 

or 2
, ),,( CzyxE
gm ∈ψ . Therefore, the following relationships hold true 
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Therefore, I eliminate the value of ),,( 2/1, zyxi
E

gm +ψ  in Eqs. 5.4, obtaining the 

second order, central-finite differencing formula for the even-parity angular flux: 
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and the even-parity current density 
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In Eqs. 5.8 and 5.9, I have defined the pseudo-diffusion coefficients along the x-

axis, as 
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Analogously, the expression for ),,( 2/1 kji
E zyxf −  is obtained as follows 
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The partial derivatives along the y- and z-axis are discretized in a similar fashion, 

yielding the finite-volume discretized elliptic operator given by 
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Finally, by integrating the remaining terms of the EP-SSN equations, I obtain the 

complete multigroup EP-SSN formulation with anisotropic scattering and source as 

follows 
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 (5.16) 

for c=1, Ncm,  m=1, N/2, L=0, N-1, g=1, G. 

The EP-SSN equations discretized with the finite-volume method can be expressed 

in a matrix operator form characterized by a 7-diagonal banded structure. 
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for c=1, Ncm; m=1, N/2; g=1, G, 
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for i=2, 1−c
xN ,  j=2, 1−c

yN , k=2, 1−c
zN , c=1, Ncm, m=1, N/2, g=1, G. 

5.2 Numerical Treatment of the Boundary Conditions 

The boundary conditions for the EP-SSN equations are discretized as well using the 

finite-volume method. In general, the BCs can be prescribed at back (-xb), front (+xb), left 

(-yb), right (+yb), bottom (-zb), and top (+zb). The reflective boundary conditions are 

simply derived as follows: 
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kjgmψ ,   +xb) 0,,2/1,, =+

O
kjNgm x

ψ ,  (5.17a) 
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O
kNigm y

ψ ,   (5.17b) 
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Njigm z

ψ .   (5.17c) 
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The vacuum boundary conditions are obtained from Eq. 4.32, by setting 0=α . 

Hence, the vacuum boundary conditions along the x-, y- and z-axis are given below: 

Front side vacuum boundary condition x = +xb 
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Back side vacuum boundary condition x = -xb 
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Right side vacuum boundary condition y = +yb 
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Left side vacuum boundary condition y = -yb 
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Bottom side vacuum boundary condition z = -zb 
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Top side vacuum boundary condition z = +zb 
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5.3 The Compressed Diagonal Storage Method 

Due to the sparse structure of the matrices involved, I have adopted the 

Compressed Diagonal Storage (CDS) method in order to efficiently store the matrix 

operators. The CDS method stores only the non-zero elements of the coefficient matrix 

and it uses an auxiliary vector to identify the column position of each element. Due to the 
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banded structure of the coefficients matrix, a mapping algorithm is easily defined for a 

generic square matrix as follows: 

Jj
Ii

Ajia ji

,1
,1

),( ,

=
=

∈

 ⇒   
3,3

,1

~),(~
,

−=
=

∈

d
Ii

Adia di

, ),( dijcol .  (5.21) 

The algorithm defined in Eq. 5.21, maps the full structure of the matrix A into a 

compressed diagonal structure, where for each element on row i, there is an associated 

diagonal index ranging from -3 to 3, with index 0 being the main diagonal, and an 

auxiliary vector jcol, which stores the column position of each element. If we consider a 

360x360 full matrix in single precision, with a total of 129600 elements, the memory 

required for allocating the matrix is roughly 2.1 MB. However, if the CDS method is 

used, the total number of non-zero elements to be stored is only 2520, for a total memory 

requirement of 42 KB, which is a reduction of a factor of 50 compared to the full matrix 

storage. Moreover, since the CDS method stores only non-zero elements, I have also 

obtained a reduction in the number of operations involved in the matrix-vector 

multiplication algorithms. 

5.4 Coarse Mesh Interface Projection Algorithm 

The partitioning of the spatial domain into non-overlapping coarse meshes leads to 

a situation in which the EP-SSN equations have to be discretized independently for each 

coarse mesh. Therefore, each coarse mesh is considered as an independent transport 

problem; however, to obtain the solution on the whole domain, an interface projection 

algorithm has to be used in conjunction with an iterative method. The matrix operators 

have to be modified on the interfaces in order to couple the equations on each coarse 
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mesh. For explanatory purposes, consider Figure 5.3, which shows the interface region 

between two coarse meshes. 

 

 
Figure 5.3. Representation of a coarse mesh interface 

The coordinates xN+1/2 and x1/2’ represent the interface on coarse mesh 1 and 2, 

respectively. As shown in Figure 5.3, the discretization of the elliptic operator for coarse 

mesh 1, using the central finite difference method, would require the values of the even-

parity angular flux at points xN-1, xN, and x1’. Similarly, in coarse mesh 2, the 

discretization would involve the value of the EP angular flux at points xN, x1’, and x2’. 

However, the point x1’ is located on coarse mesh 2 and point xN is located on coarse mesh 

1; hence this term does not appear explicitly in the matrix operator for both coarse 

meshes. 

In order to couple the equations on the interface, I have reformulated the discretized 

equations by bringing the unknown points on the right side of the equations. The 

numerical discretization of the EP-SSN equations in coarse mesh 1 would yield 

xN x1’ 

Coarse mesh 2

xN+1/2 x1/2’ 

xN-1 x2’ xN-1/2 x3/2’ 

∆x1’ ∆xN 

Coarse mesh 1
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The coefficient x
gmd ,,'1  depends on the material properties and fine mesh 

discretization of coarse mesh 2, and it is calculated a priori; however, in Eq. 5.22, the 

term E
gm,,'1

~ψ  is unknown, and hence has to be evaluated iteratively by placing it in the 

source term, as shown in Eq. 5.24. 
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A similar equation can be formulated for coarse mesh 2, as follows 
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Therefore, Eq. 5.24 and 5.26 are coupled through the value of the EP angular fluxes 

E
gm,,'1

~ψ  and E
gmN ,,

~ψ . The EP-SSN equations are solved iteratively starting in coarse mesh 1, 

and assuming an initial guess for E
gm,,'1

~ψ . Once the calculation is completed the value of 

E
gmN ,,

~ψ  in Eq. 5.26, is set equal to E
gmN ,,ψ . Hence, once the calculation is completed on 

coarse mesh 2, the value obtained for E
gm,,'1ψ  is used in Eq. 5.24, to update the value 

of E
gm,,'1

~ψ ; this procedure continues until a convergence criterion is satisfied. 

In a 3-D Cartesian geometry the coupling on the coarse mesh interfaces is achieved 

exactly as described above; however, in this case the coarse meshes can be discretized 

with different fine mesh grid densities. The variable grid density requires a projection 

algorithm in order to map the EP angular fluxes and the pseudo-diffusion coefficients 

among different grids. As stated earlier in this chapter, the variable density grid approach 

is very effective to refine only those regions of the model where a higher accuracy is 

needed; note that the main constraint on the fine mesh grid is the mesh size being smaller 

than the mean free path for that particular material region. The main philosophy behind 

the projection algorithm is derived from the multigrid method, where a 

prolongation/injection operator is used to map a vector onto grids with different 

discretizations. 

Figure 5-4 shows the application of the projection algorithm along the y-axis on the 

interface between two coarse meshes. 
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Figure 5.4. Representation of the interface projection algorithm between two coarse 

meshes. 

For simplicity, I will consider the projection of a vector between two coarse 

meshes, along the y-axis, as shown in Figure 5.4. The fine-to-coarse projection of a 

vector is obtained by collapsing the values as follows 

∑
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1
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i
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C
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A
w = , for i=1, 4    (5.29) 

In Eq. 5.29, iFA and CA , are the areas associated with the fine-mesh and coarse-

mesh grid, respectively. Conversely, the coarse-to-fine projection is obtained as follows 

CFF FwG 111 = ,     (5.30a) 

CFF FwG 122 = ,     (5.30b) 
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CFF FwG 133 = ,     (5.30c) 

CFF FwG 144 = .     (5.30d) 

In general, the fine-to-coarse mesh projection is obtained with the following formulation 

,
1
∑
=

=
FN

j
jFjFiC GwF      (5.31) 

where 

.
iC

jF
jF A

A
w =                                                     (5.32) 

The weights in Eq. 5.32 are the ratios of the areas of the fine meshes intercepted by 

the coarse meshes on which the values are being mapped. Similarly, the coarse-to-fine 

mesh projection algorithm is defined as follows 

,
1
∑
=

=
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j
jCjCiF FwG         (5.33) 

where 

.
jC
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jC A

A
w =      (5.34) 

By using the above formulations, the even-parity angular fluxes and the pseudo-

diffusion coefficients are projected among coarse meshes with different grid densities. 

Note that the projected pseudo-diffusion coefficients need to be calculated only one time 

at the beginning of the calculation, while, the projections for the EP angular fluxes have 

to be updated at every iteration. 

5.5 Krylov Subspace Iterative Solvers 

Due to the size and sparse structure of the matrix operators obtained from the 

discretization of the EP-SSN equations, direct solution methods such as LU 
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decomposition and Gaussian elimination do not perform effectively both in terms of 

computation time and memory requirements. In contrast, the Krylov subspace iterative 

methods, such as Conjugate Gradient (CG), are specifically designed to efficiently solve 

large linear systems of equations characterized by sparse matrix operators. 

Note that in many engineering applications, the matrix operators resulting from a 

finite-difference discretization is usually positive-definite and diagonally dominant. 

These conditions are fundamental in ensuring the existence of a unique solution. A matrix 

is positive-definite if it satisfies the following condition 

0>xAxT rr , for every vector 0≠xr .   (5.35) 

Moreover, a matrix is defined to be diagonally dominant if the following condition holds 

true. 

∑
≠
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≥
n
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ijii aa
1

, for i=1, n.    (5.36) 

The CG algorithm is based on the fact that the solution of the linear system bxA
rr

=  

is equivalent to finding the minimum of a quadratic form given by 

cxbxAxxf TT +−=
rrrr

2
1)( .    (5.37) 

The minimum of the quadratic form of Eq. 5.37 is evaluated by calculating its 

gradient as follows 
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The gradient of a function is a vector field, and for a given point x, points in the 

direction of the greatest increase of )(xf r . Because the matrix A is positive-definite, the 

surface defined by the function )(xf r  presents a paraboloid shape, which ensures the 

existence of a global minimum. Moreover, the diagonal dominance of the matrix A 

ensures the existence of a unique solution. By applying Eqs. 5.37 and Eq. 5.38, we derive 

the formulation for the gradient of the function )(xf r , given by 

bxAxAxf T −+=′ rrr

2
1

2
1)( .     (5.39) 

If the matrix A is symmetric, Eq. 5.39 reduces to 

bxAxf −=′ rr)( .           (5.40) 

Therefore, by setting )(' xf r  in Eq. 5.40 equal to zero, we find the initial problem 

that we wish to solve. 

5.5.1 The Conjugate Gradient (CG) Method 

The CG method is based on finding the minimum of the function )(xf r  using a line 

search method. The calculation begins by guessing a first set of search directions 0d
r

 

using the residual as follows: 

000 xAbrd rrrr
−== .     (5.41) 

The multiplier α  for the search directions is calculated as follows 

i
T
i

i
T

i
i dAd

rr
rr

rr

=α ,     (5.42) 

where i is the iteration index. 

The multiplier α  is chosen such that the function )(xf r  is minimized along the search 

direction. Therefore, the solution and the residuals are updated using Eqs. 5.43 and 5.44. 
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iiii dxx
rrr α+=+1 ,     (5.43) 

iiii dArr
rrr α−=+1 .     (5.44) 

The Gram-Schmidt orthogonalization method is used to update the search 

directions by requiring the residuals to be orthogonal at two consecutive iterations. The 

orthogonalization method consists of calculating the search directions 

iiii drd
rrr

111 +++ += β ,    (5.45) 

where the coefficientsβ are given by 
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Note that Eq. 5.44 indicates that the new residuals are a linear combination of the 

residual at the previous iteration and idA
r

. It follows that the new search directions are 

produced by a successive application of the matrix operator A on the directions at a 

previous iteration id
r

. The successive application of the matrix operator A on the search 

directions id
r

 generates a vector space called Krylov subspace, represented by 

{ }0
1

0
2

00 ,...,,, dAdAdAdspan i
i

rrrr
−=Κ .     (5.47) 

This iterative procedure is terminated when the residuals satisfy the following 

convergence criterion 

( ) ε≤+1irMAX ,      (5.48) 

whereε  is the value of the tolerance, which is usually set to 1.0e-6. 

5.5.2 The Bi-Conjugate Gradient Method 

The Bi-Conjugate Gradient (Bi-CG) has been developed for solving non-symmetric 

linear systems. The update relations for the residuals are similar to the CG method; 
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however, they involve the transpose of the matrix operator. Hence, the residuals and the 

search directions are updated with the following equations: 

iiii Aprr α−= −1 ,    (5.49a) 

i
T

iii pArr ~~~
1 α−= − ,    (5.49b) 

111 −−− += iiii prp β ,    (5.49c) 
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5.5.3 Preconditioners for Krylov Subspace Methods 

The convergence rate of iterative methods depends on spectral properties of the 

coefficient matrix. The main philosophy of preconditioning is based on the attempt to 

transform the linear system into one that preserve the solution, but that has more 

favorable spectral properties. The spectral radius in norm L2 for a symmetric matrix A is 

defined by 

( )
2

AA =ρ .     (5.51) 

The spectral radius so defined, gives an indication of the convergence behavior of 

the iterative method used. In the case of preconditioning, if a matrix M approximates the 

coefficient matrix A, the transformed system 

bMxAM
rr 11 −− = ,         (5.52) 

has the same solution of the original system bxA
rr

= , but the spectral radius of its 

coefficient matrix AM 1−  is generally smaller than the original system. Various 

preconditioning techniques include the Jacobi or diagonal scaling, the Incomplete 
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Cholesky, and the multigrid. The Jacobi preconditioner is the most straightforward 

preconditioner and it is based on using the main diagonal of the matrix A.  



 =

=
otherwise.   0

ji if ,
,

ii
ji

a
m      (5.53) 

This method is the least demanding in terms of memory requirements and 

computation time; however, the method also presents limited performance characteristics. 

I have developed an Incomplete Cholesky preconditioner for the Conjugate 

Gradient (ICCG) method. This method is well suited for symmetric definite matrices and 

it is based on decomposing the matrix A using the Cholesky factorization method.24 Since 

the matrix is symmetric, only the lower triangular part L is computed, thereby saving half 

of the operation required for a classic LU decomposition. The preconditioning matrix can 

be written as follows 

TLLM = .     (5.54) 

The elements of the matrix L, decomposed with Incomplete Cholesky algorithm are 

given by 
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CHAPTER 6 
DEVELOPMENT AND BENCHMARKING OF THE PENSSN CODE 

In this chapter, I will present the development of the new PENSSn code, and then I 

will test its numerics and the accuracy. In particular, I will address the performance of the 

Krylov subspace methods, including the CG and Bi-CG iterative solvers, along with the 

Incomplete Cholesky preconditioner for the CG method. The accuracy of the EP-SSN 

method will be tested for the following parameters 

• Scattering ratio; 
• Spatial truncation error; 
• Low density materials; 
• Material discontinuities; 
• Anisotropic scattering. 
  

In addition, I will analyze the method based on two 3-D criticality benchmark 

problems proposed by Takeda and Ikeda.43 The first problem involves the simulation of 

the Kyoto University Critical Assembly (KUCA) reactor. This problem is characterized 

by significant transport effects due to the presence of a control rod and a void-like region. 

The second problem involves the simulation of a small Fast Breeder Reactor (FBR) with 

a control rod half-inserted into the core. The solutions obtained for these two benchmarks 

will be compared with the Monte Carlo and SN methods. 

Finally, I will present the results obtained for the OECD/NEA1 MOX 2-D Fuel 

Assembly Benchmark problem.44 

                                                 
1 OECD/NEA - Organisation for Economic Co-operation and Development/Nuclear Energy Agency 
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6.1 Development of the PENSSn (Parallel Environment Neutral-particle 
Simplified Sn) Code 

I have developed a new 3-D radiation transport code, PENSSn, based on the EP-

SSN formulation. The code development began in 2001 utilizing the Simplified P3 

formulation, that led to the development of the PENSP3 (Parallel Environment Neutral-

particle SP3) code.25 However, the extension of the SP3 algorithm to an arbitrary order 

(N) proved to be impractical. Hence, I redirected the work by deriving a 3-D EP-SSN 

formulation. PENSSn consists of ~10,000 lines of code entirely written in 

ANSI/FORTRAN-90, using the Message Passing Interface (MPI) libraries for 

parallelization.27  

PENSSn is a standalone code which solves the multigroup EP-SSN equations of 

arbitrary order with arbitrary anisotropic scattering expansion. To improve the 

convergence rate of the Source Iteration method, a modified formulation of the EP-SSN 

equations (see Section 4.2.3) has been integrated into PENSSn. Currently both fixed 

source and criticality eigenvalue calculations can be performed with up- and down-

scattering processes. 

The discretized EP-SSN equations are solved using the Krylov subspace methods 

described in Chapter 5, i.e. CG and Bi-CG. However, in the parallel version of PENSSn, 

only the Bi-CG algorithm is implemented due to its superior parallel performance and 

numerical robustness as compared to CG. 

Angular, spatial and hybrid (spatial/angular) domain decomposition algorithms 

have been developed to achieve full-memory partitioning and multi-tasking. The code is 

capable of parallel I/O in order to deal efficiently with large data structures. A complete 

description of the domain decomposition algorithms is given in Chapter 7. 
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PENSSn produces balance tables and a complete description of the model solved, 

along with performance and timing data. The code is completed by a parallel data 

processor, PDATA, which collects the output files produced by different processors and 

generates a single file for each energy group for plotting or further analysis. 

Currently, the geometry and material distribution are prepared for PENSSn using 

the PENMSH45 tool in the PENTRAN Code System. PENSSn requires only one 

additional input file which is defined as problem_name.psn. The PENSSn input file is 

shown in Figure 6-1. 

 
Figure 6-1. Description of PENSSn input file. 

As shown above, the input file provides three groups of information: 

• General PENSSn settings; 
• Parallel Environment settings; 
• Convergence control parameters. 
 

The General PENSSn group is used to input the SSN and PN order for the 

calculation. Note that the SSN order is an even number and also it holds the 

condition NN PSS > . 

The Parallel Environment group is used to specify the decomposition vector for the 

parallel environment. Note that the number of coarse meshes has to be divisible by the 

number of processors specified for the spatial domain, and also the number of directions 

has to be divisible by the number of processors specified for the angular domain. 
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The Convergence control parameters group is used to specify the inner, outer, and 

Krylov subspace (CG) tolerances. Also the maximum number of inner, outer, up-

scattering and Krylov iterations can be specified. 

PENSSn can be run in parallel or serial mode; note that for the serial mode version, 

both CG and Bi-CG algorithms are available. A flow-chart for the PENSSn code is 

shown in Figure 6-2. 
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Figure 6-2. Flow-chart of the PENSSn code. 
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Figure 6-2. Flow-chart of the PENSSn code (Continued). 
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6.2 Numerical Analysis of Krylov Subspace Methods 

In this section, I will present a detailed analysis for the CG and Bi-CG algorithms 

as applied to problems with different numerical properties. In particular, I will analyze 

the convergence performance of these algorithms in the following cases: 

• Coarse mesh partitioning of the model; 
• Boundary conditions; 
• Material heterogeneities; 
• Higher order EP-SSN methods. 
 
6.2.1 Coarse Mesh Partitioning of the Model 

In this section, I will study the performance of the iterative solvers when the model 

is partitioned into coarse meshes. The first test problem consists of a simple symmetric 3-

D problem shown in Figure 6-3. The problem size is 10.0x10.0x10.0 cm; a uniform 

distributed source is located within a cube of side 5.0 cm. Vacuum boundary conditions 

are prescribed for this model on every surface. The model is characterized by one 

homogeneous material with one-group cross-sections; the total cross-section is equal to 

1.0, and the scattering ratio is equal to 0.9. 

 
Figure 6-3. Configuration of the 3-D test problem. 
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Coarse mesh 4 
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The system is discretized with a 1.0 cm uniform mesh along the x-, y- and z-axes. 

The EP-SS2 equation is solved using the CG and Bi-CG algorithms; the convergence 

criteria for the source iteration and the Krylov methods are 1.0e-5 and 1.0e-6, 

respectively. The formulation used for the convergence criterion in the source iteration is 

given in Eqs. 6.1. 

Source iteration method convergence criterion 

( ) ( )
( )

5
1
,

1
,, 0.1 −

∞

−

−

<
−

e
r

rr
i

gm

i
gm

i
gm

r

rr

ψ
ψψ

.   (6.1) 

Table 6-1 compares the number of iterations for the Krylov solvers, CG and Bi-CG 

in two cases. In the first case, the model is partitioned into coarse meshes (Partitioned 

model); in the second case, the model is considered as a whole and no coarse meshes are 

specified (Non-partitioned). 

Table 6-1. Comparison of number of iterations required to converge for the CG and Bi-
CG algorithms. 

 Partitioned model Non-partitioned model 

Method Krylov 
iterations

Inner 
iterations 

Krylov 
iterations 

Inner 
iterations 

Bi-CG 995 58 165 57 
CG 1620 58 270 57 

 
An increase of a factor of 6 is observed in the Krylov iterations by partitioning the 

model into coarse meshes. The coarse mesh partitioned model requires a larger number of 

iterations to converge, because the values of the angular fluxes on the interfaces of the 

coarse meshes are calculated iteratively. Notice that this effect is purely numerical and 

only related to the Krylov solvers. In fact, I did not observe any significant change in the 

number of inner iterations, which is exclusively related to the scattering ratio and hence 

to the physics of the problem. 
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I calculated the spectral condition number with an L2 norm for the partitioned and 

the non-partitioned system. The spectral condition number in L2 norm is defined by 

)(
)(

)(
min

max
2 A

A
Ak

λ
λ

= ,     (6.2) 

where, )(max Aλ  and )(min Aλ are the maximum and minimum eigenvalues of the matrix A. 

The spectral condition number gives an indication of the convergence behavior of 

the iterative method. For the CG algorithm the number of iterations required to reach a 

relative reduction of ε (one order of magnitude) in the error is proportional to 2k . For 

the non-partitioned model, I obtained 6.42 =k , while for the coarse mesh partitioned 

model, I obtained 0.42 =k in each coarse mesh. 

Figure 6-4 confirms the prediction based on the spectral condition number; the 

number of iterations required to reduce the error by one order of magnitude is 

approximately 2.1. 
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Figure 6-4. Convergence behavior of the CG algorithm for the non-partitioned model. 
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Based on these results, I conclude that the increase in the number of Krylov 

iterations observed between the partitioned and non-partitioned models is due to the 

presence of the coarse mesh interfaces. Moreover, these tests show the superior 

performance of the Bi-CG algorithm compared to CG; the Bi-CG algorithm requires only 

~61% of the CG iterations for both the non-partitioned and partitioned models. 

6.2.2 Boundary Conditions 

The objective of the following test problem is to analyze the effect of different 

boundary conditions on the convergence behavior of the Krylov solvers. The 3-D test 

problem used in the previous section has been modified by prescribing reflective 

boundary conditions on the planes at x=0.0, y=0.0 and z=0.0, and vacuum boundary 

conditions on the planes at x=10.0 cm, y=10.0 cm and z=10.0 cm. The model is 

partitioned into four coarse meshes, which are discretized with a 1.0 cm uniform mesh. 

Table 6-2 lists the number of iterations required by the Bi-CG and CG method to achieve 

convergence, along with the spectral condition number ( 2k ) calculated for each coarse 

mesh. 

Table 6-2. Number of Krylov iterations required to converge for the CG and Bi-CG 
algorithms with different boundary conditions. 

Coarse mesh 2k  Bi-CG 
method 

CG 
method 

1 4.5 399 649 
2 4.25 361 595 
3 4.25 362 594 
4 4.05 338 546 

 
As expected, the number of Krylov iterations is higher for coarse meshes with 

larger condition number. However, the Krylov solvers require a different number of 

iterations per each coarse mesh, due to the effect of boundary conditions. As will be 
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discussed in Chapter 7, this situation will have a slight impact on the performance of the 

parallel algorithm. 

6.2.3 Material Heterogeneities 

Realistic engineering applications are characterized by material heterogeneities; 

hence, it is important to determine their impact on the Krylov solvers. For this purpose, I 

have modified the 3-D test problem described earlier, with a heterogeneous material 

configuration, shown in Figure 6-5. The boundary conditions prescribed are the same as 

for the previous test case. 

 
Figure 6-5. Heterogeneous configuration for the 3-D test problem. 

Table 6-3 demonstrates that the spectral condition number is affected by the 

different material configuration in each coarse mesh, leading to a different number of 

iterations required by the Krylov solvers for each coarse mesh. 

Table 6-3. Number of Krylov iterations required to converge for CG and Bi-CG. 
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3 1.88 302 518 
4 1.86 282 483 

Coarse mesh 1 
S=1.0 n/cm3/s 

0.1=tσ  

c=0.9 

Coarse mesh 2 
S=0.0 n/cm3/s 

0.2=tσ  

c=0.9 

Coarse mesh 3 
S=0.0 n/cm3/s 

0.2=tσ  

c=0.9 

Coarse mesh 4 
S=0.0 n/cm3/s 

0.2=tσ  

c=0.9 

0.0 5.0 10.0

5.0 

10.0 

x 

y 



97 

 

Note that the spectral condition numbers for coarse meshes 2, 3, and 4 are relatively 

lower than for coarse mesh 1. This is due to the fact that the materials in coarse meshes 2, 

3, and 4 are optically thicker than region 1. The optical thickness directly impacts the 

condition number. In general, optically thin regions present matrix operators with larger 

spectral condition numbers; conversely, optically thick regions present matrices with 

smaller spectral condition numbers. 

6.2.4 Convergence Behavior of Higher EP-SSN Order Methods 

In this section, I will analyze the convergence behavior of the Krylov methods for 

high EP-SSN order methods. The test problem considered is a cube with homogeneous 

material, and one group cross-sections with c=0.9. The side of the cube measures 5.0 cm 

and it is discretized with a 1.0 uniform mesh. Vacuum boundary conditions are 

prescribed on every side of the model; also a uniform distributed source is present in the 

model, which emits 1.0 particles/cm3/sec. This problem has been solved with the EP-SS8 

equations; the convergence criteria prescribed for the source iteration and Krylov 

methods are 1.0e-5 and 1.0e-6, respectively. Table 6-4 shows the spectral condition 

number ( 2k ) as a function of direction for the EP-SS8 equations. 

For simplicity I have selected the EP-SS8 equations; however the discussion below 

can be extended to any SSN order. 

Table 6-4. Number of Krylov iterations required to converge for the CG and Bi-CG 
algorithms for the EP-SS8 equations. 

Direction 
number 

Direction 
cosine (µ) 2k  Bi-CG 

method 
CG 

method 
1 0.1834346 1.34 49 85 
2 0.5255324 3.35 73 114 
3 0.7966665 5.62 89 144 
4 0.9602898 7.11 101 161 
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Table 6-4 indicates that the spectral condition number increases as the direction 

cosine approaches 1.0; hence, the number of Krylov iterations required to achieve 

convergence increases as well. This behavior can be explained by considering the 

definition of condition number (i.e., Eq. 6.2), and by observing the distribution of the 

eigenvalues for the matrix operators on each direction (µ), as shown in Figure 6-6. 

 
Figure 6-6. Distribution of eigenvalues for the EP-SS8 equations. 

The distribution of eigenvalues is clustered toward the value of 1.0 for smaller 

values of µ; however, as the direction cosine increases, the eigenvalue distributions start 

to drift away from 1.0. Therefore, based on the definition of condition number, those 

matrices with a distribution of eigenvalues clustered around 1.0 present the smallest 

condition number, and consequently the Krylov method requires fewer iterations to 

converge. 
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6.3 Testing the Incomplete Cholesky Conjugate Gradient (ICCG) Algorithm 

This section presents the numerical testing of the Incomplete Cholesky Conjugate 

Gradient (ICCG) algorithm. In order to optimize the preconditioner for large sparse 

matrices, I have utilized the Incomplete Cholesky (IC0) no-fill factorization. With this 

method the Cholesky factorization is computed only for non-zero elements of the EP-SSN 

matrix operators. 

The test problem utilized is a 3-D cube with a homogeneous material. The side of 

the cube measures 5.0 cm. The boundary conditions prescribed, are reflective on the 

planes along x=0.0 cm, y=0.0 cm, and z=0.0 cm, and vacuum on the planes along x=5.0 

cm, y=5.0 cm, and z=5.0 cm. The model is discretized with a 1.0 cm uniform mesh along 

the x, y, and z axis. The convergence criteria prescribed for the source iteration and ICCG 

methods are 1.0e-5 and 1.0e-6, respectively. Table 6-5 shows the number of iterations for 

the ICCG method compared to the non-preconditioned CG algorithm. 

Table 6-5. Number of iterations for the ICCG and CG algorithms. 
Method ICCG CG 
EP-SS4 37 68 
EP-SS6 65 120 
EP-SS8 91 173 

 
For SSN orders ranging from 4 to 8, the ICCG method yields a reduction of the 

number of iterations by a factor of two. 

The main disadvantage of the ICCG method is the computation time and memory 

required to perform the Incomplete Cholesky factorization of the coefficient matrices; I 

have observed that for large problems, the factorization phase account for ~30% of the 

total computation time. In addition, the time spent for each Krylov iteration increases 

because the preconditioning matrix has to be solved as well. However, the ICCG method 
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yields an overall reduction of the computation time by a factor of ~1.5. In spite of its 

good performance, the ICCG method has not been implemented in the current 

algorithms; this decision has been dictated mainly by the large memory required by the 

ICCG method. 

6.4 Testing the Accuracy of the EP-SSN Method 

In this section, I will test the accuracy of the EP-SSN equations, and I will identify 

the limitations of the methodology with respect to scattering ratio, spatial truncation 

error, low density materials, material discontinuities, and anisotropic scattering order. 

In conclusion, I will analyze the accuracy of the EP-SSN using two 3-D criticality 

benchmark problems proposed by Takeda and Ikeda.44 

6.4.1 Scattering Ratio 

The objective of this test is to calculate the criticality eigenvalue (keff) as a function 

of the scattering ratio (c). For this purpose, I will consider a simple 2-D criticality 

eigenvalue problem with 0.4,0.0 ≤≤ yx . The boundary conditions prescribed are 

reflective at x=0.0, y=0.0, and vacuum at x=4.0 cm, y=4.0. The model is discretized with 

a 0.25 cm uniform mesh. The model configuration is shown in Figure 6-7. 
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Figure 6-7. Configuration of the 2-D criticality eigenvalue problem. 

For this problem, I will progressively modify the scattering ratio in region 2; 

however, as the scattering ratio decreases, the outer region becomes less diffusive, so it is 

expected that the diffusion equation will be less accurate compared to higher order SSN 

methods. 

Figure 6-8 shows the comparison among the criticality eigenvalues obtained with 

the EP-SSN and S16 methods for different scattering ratios in a range of 0.6 – 0.99. The 

S16 transport solutions have been obtained with the PENTRAN and DORT codes. 

 
Figure 6-8. Criticality eigenvalues as a function of the scattering ratio (c) for different 

methods. 
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Based on the data presented in Figure 6-8, the EP-SS2 method yields inaccurate 

results for every scattering ratio. Because of large particle leakage from the system, the 

EP-SS2 method yields inaccurate results also for scattering ratio greater than 0.9, where 

the physics is dominated by diffusive processes. However, higher order EP-SSN methods 

yield accurate results for every scattering ratio, with a maximum relative difference of 

0.85% compared to the S16 transport calculation. 

Note also that by increasing the SSN order, the accuracy is not improved as well; 

this behavior is due to the fact that the EP-SSN formulation does not yield the transport 

solution as the order increases. 

Figure 6-9, clearly shows the increased accuracy obtained using higher order EP-

SSN methods relative to the diffusion equation. 

 
Figure 6-9. Relative difference for criticality eigenvalues obtained with different EP-SSN 

methods compared to the S16 solution (PENTRAN code). 

It is interesting to note that the highest accuracy is achieved with the EP-SS4 

method with a relative difference of 0.12% for c=0.99. As will be shown in the next 

section, this behavior is partly due to the spatial truncation error. As expected all the EP-
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SSN methods with N>2 yield accurate results for every scattering ratio, while the 

diffusion equation degrades as the scattering ratio decreases. 

6.4.2 Spatial Truncation Error 

In order to further test the accuracy of the EP-SSN method, I have investigated the 

effect of the spatial discretization for criticality eigenvalue calculations. For this purpose 

I solved the problem presented in Section 6.3.1 with different fine mesh discretizations. 

The case considered has scattering ratio in region 2 equal to 0.6 (see Figure 6-6). 

I have compared the solutions obtained with the EP-SSN method with orders 

ranging from 4 to 10, with an S16 transport calculation obtained with the PENTRAN and 

DORT codes. Figure 6-10 presents the criticality eigenvalues obtained with these 

methods for different fine mesh discretizations. 

 
Figure 6-10. Plot of criticality eigenvalues for different mesh sizes. 

 As we can see, the EP-SSN method converges to the transport solutions by 

increasing the spatial resolution of the problem; however, the EP-SS4 equations yield 

more accurate results compared to higher order SSN equations, down to a mesh size of 

0.25 cm. 
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Figure 6-11 shows the relative difference of the EP-SSN solutions compared to the 

S16 transport calculation obtained with the PENTRAN code. 

 
Figure 6-11. Plot of the relative difference of the EP-SSN solutions versus transport S16 

for different mesh sizes. 

The EP-SS4 method yields relative differences of 9.87%, 2.06% and -0.09% for 

mesh sizes of 1.0, 0.5 and 0.25 cm, respectively. For a mesh size of 0.125 cm, the EP-SS6 

method yields the most accurate results, with a relative difference of 0.03%. In 

conclusion, this test problem demonstrates that the spatial discretization has to be refined 

as the SSN is increased; note that this behavior is similar to what is observed for the SN 

method. 

6.4.3 Low Density Materials 

The problem considered in this section consists of two blocks of uranium dioxide 

highly enriched at 93.2 %, surrounded by air with an 80% relative humidity. Figure 6-12 

shows a view on the x-y plane of test problem considered. The model extends along the z-

axis from 0.0 to 12.0 cm, and vacuum boundary conditions are prescribed on all surfaces. 
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Figure 6-12. Uranium assembly test problem view on the x-y plane. 

The purpose of this test problem is to assess the accuracy of the EP-SSN 

methodology in the presence of low density media such as air gaps. In low density or 

void-like regions, the particle physics is not dominated by diffusive processes, where 

elliptic-type mathematical models such as the EP-SSN equations yield accurate results. In 

this type of problems the particle behavior is well described by the transport equation 

which behaves like a hyperbolic wave equation. 

The major issue affecting the accuracy of the EP-SSN equations is the diffusion 

coefficient defined by 
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In low density media, the value of the total scattering cross-section is usually below 

1.0e-3 [1/cm]. Hence, the value of the diffusion coefficient becomes abnormally large, 

leading to numerical difficulties and to an underestimation of the leakage term. In order 

to remedy this situation, I have introduced a density factor multiplier (DFM) in order to 

scale up the cross-section only in low density regions. The density factor is applied to the 
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cross-sections of materials for which the total cross-sections have a value within 1.0e-3 

and 1.0e-7. The value of DFM is chosen such that the scaled cross-sections have a value 

of ~1.0e-1. This is an ad-hoc treatment, but it has been proven effective in improving the 

convergence properties and accuracy of the EP-SSN method for problems with low 

density regions. The two-group cross-sections and the fission spectrum are listed in Table 

6-6; group 1 spans an energy range between 0.4 and 10.0 MeV, while group 2 spans a 

range between 0.0 and 0.4 MeV. 

Table 6-6. Two groups cross-sections and fission spectrum. 

Material Group 
(g) aσ  fνσ  tσ  1, →gsσ  2, →gsσ  )(gχ

UO2 1 6.1902e-02 1.4436e-01 2.3968e-01 1.5220e-01 0.0 0.896
 2 8.6126e-02 1.7309e-01 4.2551e-01 3.3938e-01 2.5582e-02 0.104

Air 1 3.3372e-06 0.0 1.0115e-04 8.6948e-05 0.0 0.0 
 2 6.1639e-06 0.0 2.8127e-04 2.7511e-04 1.0868e-05 0.0 

 
For this problem, I calculated physical quantities of interest such as k-effective, 

leakage, collision and scattering term. Then, I compared these quantities with a transport 

solution obtained with the PENTRAN code. Table 6-7 compares the criticality 

eigenvalues obtained by the EP-SSN method with different DFM values, with the 

PENTRAN S6 solution. 

Table 6-7. Comparison of keff obtained with the EP-SSN method using DFM versus 
PENTRAN* S6 (Note that DFM=1.0 implies no cross-sections scaling). 

Method 
keff 

(DFM=100.0) Rel. difference vs. S6 

keff 
(DFM=1.0) Rel. difference vs. S6 

EP-SS2 0.77621 -18.47% 0.69437 -27.07% 
EP-SS4 0.90544 -4.90% 0.83097 -12.72% 
EP-SS6 0.92138 -3.23% 0.8464 -11.10% 
EP-SS8 0.92436 -2.91% 0.84894 -10.84% 
EP-SS10 0.92529 -2.82% 0.8496 -10.77% 

*PENTRAN S6 predicts keff= 0.95211. 

Table 6-7 indicates that a density factor of 100.0, largely improves the accuracy of 

keff. However, if DFM is not utilized, the accuracy of the EP-SSN method is poor for this 
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problem, and the convergence trend is characterized by an oscillatory behavior which 

leads to divergence within the maximum number of outer iterations specified (50). 

Figure 6-13 shows the relative difference between the physical quantities calculated 

with EP-SSN (DFM=100.0) and S6 PENTRAN methods. 
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Figure 6-13. Relative difference of physical quantities of interest calculated with EP-SSN 
method compared to the S6 PENTRAN solution. 

For this problem, transport effects are significant due to the large boundary leakage 

and highly angular behavior due to the low density medium. Hence, higher order EP-SSN 

methods yield a better angular representation of the particle flux, therefore leading to 

more accurate results. 

The EP-SS10 method yields a relative difference compared to the S6 solution of -

2.8%, 1.9%, -1.2% and -0.7% for keff, leakage, collision and scattering term, respectively. 

Note also that the density factor (DFM=100.0) improves the convergence behavior of the 

EP-SSN method. 

Figure 6-14 presents the criticality eigenvalue relative error as a function of the 

outer iteration number for PENSSn with DFM=100.0 and PENTRAN S6. 
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Figure 6-14. Convergence behavior of the PENSSn with DFM=100.0 and PENTRAN S6. 

The PENTRAN relative error presents an oscillatory behavior due to the Aitken’s 

extrapolation method utilized.39 The EP-SS2 relative error presents a sudden drop from 

1.0e-4 to 1.0e-5, probably indicating false convergence. The EP-SSN calculations with 

N>2 all indicate a rather stable convergence behavior. 

6.4.4 Material Discontinuities 

In this section, I will analyze material discontinuities which may introduce 

significant angular dependencies on the particle flux at the material interface. The test 

problem considered is a simple 2-D model made of two heterogeneous regions, with a 

fixed source. The geometric and material configuration for the test problem is shown in 

Figure 6-15. The test problem is characterized by a steep change in the total cross-section 

between regions 1 and 2; also, region 2 is defined as a highly absorbent material. Because 

of these features the problem presents strong transport effects. 
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Figure 6-15. Geometric and material configuration for the 2-D test problem. 

The solution for this problem is obtained with the EP-SS2, EP-SS4 and PENTRAN 

S16 methods. Figure 6-16 shows the flux distribution, along the x-axis.  
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Figure 6-16. Scalar flux distribution at material interface (y=4.84 cm). 

As indicated by Figure 6-16, the EP-SS4 yields an accurate solution compared to 

S16; the maximum relative difference between the two methods (15.58%) is found at 

x=4.84 cm and y=4.84 cm, which is the fine mesh on the corner of region 1. At this mesh 
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location, the transport effects due to material transition are significant, resulting in the 

largest difference between the EP-SS4 and S16 methods. As expected, the EP-SS2 method 

is accurate in region 1; however, the solution rapidly degrades as we move into region 2 

where the transport effects are significant. 

Figure 6-17 presents the relative difference for the EP-SS2 and EP-SS4 methods as 

compared to PENTRAN S16 at the material interface. 
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Figure 6-17. Relative difference versus S16 calculations at material interface (y=4.84 cm). 

Figure 6-17 shows that the EP-SS4 method exhibits a maximum relative difference 

of ~15.6% at the material interface. This problem clearly shows how higher order EP-SSN 

methods introduce more transport physics into the solution compared to the diffusion-like 

equation. 

The balance table (Table 6-8) demonstrates that the leakage term is the major 

component affecting the accuracy of the EP-SSN method for problems with strong 

transport effects. The EP-SS4 method yields a relative difference of only -1.12% for the 
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leakage term. Note that the collision and scattering terms, are relatively well represented 

by both EP-SS2 and EP-SS4 methods. 

Table 6-8. Balance tables for the EP-SSN and S16 methods and relative differences versus 
the S16 solution. 

Integral system balance Relative difference vs. S16 
Method Leakage Collision Scatter Leakage Collision Scatter 
EP-SS2 -1.76e-06 -4.61e+01 2.11e+01 -94.62% -0.37% -0.81% 
EP-SS4 -3.23e-05 -4.65e+01 2.15e+01 -1.12% 0.47% 1.03% 

S16 -3.27e-05 -4.62e+01 2.12e+01 - - - 
 

These findings are further confirmed by observing the integral boundary leakage 

for different boundary surfaces. Table 6-9 clearly indicates that the predicted leakage rate 

is underestimated by ~98.7% using the EP-SS2 method, while it is only underestimated 

by ~2% using the EP-SS4 method. 

Table 6-9. Integral boundary leakage for the EP-SSN and S16 methods and relative 
differences versus the S16 solution. 

Integral boundary leakage Relative difference vs. S16 
Method East (+x) North(+y) East (+x) North(+y) 
EP-SS2 2.12e-07 2.12e-07 -98.70% -98.70% 
EP-SS4 1.59e-05 1.59e-05 -1.98% -1.99% 

S16 1.63e-05 1.63e-05 - - 
East (+x) refers to the right boundary of the system at x=10.0 cm, while North (+y) refers 
to the top boundary of the system at y=10.0 cm. 
 

This is very encouraging because it indicates that the EP-SSN methodology could 

be applicable for shielding problems. 

6.4.5 Anisotropic Scattering 

This section addresses the accuracy of the EP-SSN equations for problems 

characterized by anisotropic scattering. The test problem consists of a cylinder with a 

20.0 cm radius, extending axially for 30.0 cm, representing a fuel region; the cylinder is 

then surrounded by water extending from 20.0 cm to 30.0 cm along the x- and y-axis, and 

from 30.0 to 40.0 cm along the z-axis. Reflective boundary conditions are prescribed on 
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the planes at x=0.0 cm, y=0.0 cm and z=0.0 cm; vacuum boundary conditions are 

prescribed on the planes at x=30.0 cm, y=30.0 cm and z=40.0 cm. A two-group cross-

section set is generated using the first two groups of the BUGLE-96 library with P3 

anisotropic scattering order. A uniform fixed source is placed in the fuel region, with an 

energy spectrum given in Table 6-10. 

Table 6-10. Fixed source energy spectrum and energy range. 

Energy group 
Group upper 

boundary (MeV) 
Group lower 

boundary (MeV) 
Fixed source 

(n/cm3/s) 
1 17.3 14.2 4.25838e-5 
2 14.2 12.2 1.84253e-4 

 
I have compared the results obtained with the EP-SSN method with a PENTRAN S8 

transport solution. The convergence criterion for the angular flux has been set to 1.0e-4. I 

calculated the relative difference between the solutions obtained with the EP-SSN and the 

S8 methods. Figures 6-18 and 6-19 show the fraction of scalar flux values within different 

ranges of relative difference (compared to S8) for energy group 1 and 2 respectively. 
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Figure 6-18. Fraction of scalar flux values within different ranges of relative difference 

(R.D.) in energy group 1. 
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Figure 6-19. Fraction of scalar flux values within different ranges of relative difference 

(R.D.) in energy group 2. 

Note that by increasing the SSN order, the number of scalar flux values with 

relative difference less than 5% increases in both groups; this behavior demonstrates that 

higher order EP-SSN methods improve the accuracy of the solution, especially for highly 

angular dependent problems. As expected the accuracy of the EP-SSN method increases 

for lower energy groups because the probability of leakage decreases and the medium 

becomes optically thicker. Table 6-11 shows the maximum and minimum relative 

difference in the scalar flux versus the S8 method2, in energy groups 1 and 2. 

Table 6-11. Maximum and minimum relative differences in the scalar flux versus the S8 
method for energy group 1 and 2. 

 Group 1 Group 2 
Method MAX MIN MAX MIN 
EP-SS4 24.42 1.292e-03 17.86 1.379e-04 
EP-SS6 21.34 1.401e-04 15.01 6.053e-05 
EP-SS8 18.37 4.226e-04 13.74 2.508e-04 

                                                 
2 The MAX and MIN relative difference compared to the S8 method are defined as [MAX|(φS8-φEP-SSn)|/φS8] 
and MIN[|(φS8-φEP-SSn)|/φS8] respectively. 
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Note that the EP-SS8 method significantly improves the accuracy yielding a 

maximum relative difference in the scalar flux of 18.37% and 13.74% in energy groups 1 

and 2, respectively. 

Figures 6-20 and 6-21 show the relative difference between the EP-SS8 and S8 flux 

solutions in group 1. The front view results, Figure 6-20, indicate that the largest 

differences occur on the external surface of the model, where vacuum boundary 

conditions are specified; as expected the relative difference is larger in this region due to 

the approximate vacuum boundary conditions derived for the EP-SSN method. The rear 

view results, shown in Figure 6-21, indicate a noticeable a larger relative difference on 

the material interface between the fuel region and the moderator due to higher order 

angular dependencies. 

 
Figure 6-20. Front view of the relative difference between the scalar fluxes obtained with 

the EP-SS8 and S8 methods in energy group 1. 
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Figure 6-21. Rear view of the relative difference between the scalar fluxes obtained with 

the EP-SS8 and S8 methods in energy group 1. 

6.4.6 Small Light Water Reactor (LWR) Criticality Benchmark Problem 

A small LWR benchmark problem has been proposed by Takeda and Ikeda and it is 

one of the 3-D Neutron Transport Benchmarks by OECD/NEA.43 The model represents 

the core of the Kyoto University Critical Assembly (KUCA) as shown in Figures 6-22 

and 6-23. 

A 

 

B 

 
Figure 6-22. Model view on the x-y plane3. A) view of the model from z=0.0 cm to 15.0 

cm, B) view of the model from z=15.0 cm to z=25.0 cm. 

 
                                                 
3 CR is the abbreviation for Control Rod. 
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Figure 6-23. Model view on the x-z plane. 

The model is discretized with a 1.0 cm uniform mesh. The core is polyethylene 

moderated and it consists of 93 w/o enriched U-Al alloy and natural uranium metal 

plates, with a moderation ratio of 1.5. The two-group cross-sections have been modified 

using the transport cross-section in place of the total cross-section in order to account for 

P1 anisotropic scattering. The cross-sections are given in Table 6-12 and the fission 

spectrum along with energy range are given in Table 6-13. 

Table 6-12. Two-group cross-sections for the small LWR problem. 
Material Group (g) aσ  fνσ  tσ  

Core 1 8.52709e-03 9.09319e-03 2.23775e-01 
 2 1.58196e-01 2.90183e-01 1.03864 

Reflector 1 4.16392e-04 0.0 2.50367e-01 
 2 2.02999e-02 0.0 1.64482 

CR 1 1.74439e-02 0.0 8.52325e-02 
 2 1.82224e-01 0.0 2.17460e-01 

Void 1 4.65132e-05 0.0 1.28407e-02 
 2 1.32890e-03 0.0 1.20676e-02 

 
Table 6-12. Two-group cross-sections for the small LWR problem (Continued). 

Material Group (g) 1, →gsσ  2, →gsσ  
Core 1 1.92423e-01 0.0 

 2 8.80439e-01 2.28253e-02 
Reflector 1 1.93446e-01 0.0 

 2 1.62452 5.65042e-02 
CR 1 6.77241e-02 0.0 

 2 3.52358e-02 6.45461e-05 
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Table 6-12. Two-group cross-sections the small LWR problem (Continued). 
Material Group (g) 1, →gsσ  2, →gsσ  

Void 1 1.27700e-02 0.0 
 2 1.07387e-02 2.40997e-05 

 
Table 6-13. Fission spectrum and energy range for the small LWR problem. 

Group 

Upper 
energy 

boundary 
(eV) 

Lower 
energy 

boundary 
(eV) 

Fission 
spectrum 

1 10.0e7 6.8256e-01 1.0 
2 6.8256e-01 1.0e-05 0.0 

 
For this problem, two cases have been considered: in case 1, the control rod is 

withdrawn from the reactor and it is replaced with a void-like region; in case 2 the control 

rod is completely inserted into the core. This problem is particularly challenging due to 

the transport effects introduced by the control rod and the void-like region. For this 

problem, I have not modified the cross-sections with the density factor multiplier in order 

to show the limitations of the EP-SSN method in dealing with this type of medium. 

Therefore, I have calculated the Control Rod Worth44 (CRW) defined by 

.12

11

CaseeffCaseeff kk
CRW 










−










=    (6.4) 

The criticality eigenvalues (keff) calculated with different SSN orders and the error 

relative to the Monte Carlo predictions are given in Table 6-14 for both cases. 

Table 6-14. Criticality eigenvalues calculated with different EP-SSN orders and relative 
error compared to Monte Carlo predictions. 

 Case 1  Case 2  
Method keff Error (pcm) keff Error (pcm) 
Monte 
Carlo 0.9790±0.0006 - 0.9624±0.0006 - 

EP-SS2 0.92325 -5598.2 0.9288 -3491.3 
EP-SS4 0.95266 -2591.0 0.95854 -401.1 
EP-SS6 0.95338 -2517.4 0.95931 -321.1 
EP-SS8 0.95341 -2514.3 0.95926 -326.3 

 



118 

 

The EP-SSN method predicts relatively accurate values of the keff for case 2; 

however, the method under-predicts the criticality eigenvalue when the control rod is 

withdrawn in case 1. This behavior is due to the intrinsic limitations of the method in 

dealing with void-like regions. The CRWs estimated with different EP-SSN methods and 

the Monte Carlo method, are given in Table 6-15. 

Table 6-15. CRWs estimated with the EP-SSN method. 
Method CRW 

Monte Carlo 1.66e-2±0.09e-2 
EP-SS2 -6.47e-03 
EP-SS4 -6.44e-03 
EP-SS6 -6.48e-03 
EP-SS8 -6.40e-03 

 
Based on the definition given in Eq. 6.4, a negative CRW would represent a 

positive insertion of reactivity by the control rod, which is clearly unphysical. Figure 6-

24 shows the normalized scalar flux4 for case 1, in energy group 1 along the x-axis at 

y=2.5 cm and z=7.5 cm (i.e., core mid-plane). 
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Figure 6-24. Normalized scalar flux for case 1, in group 1 along the x-axis at y=2.5 cm 
and z=7.5 cm. 

                                                 
4 The scalar flux is normalized to the maximum value. 
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The EP-SS8 method underestimates the flux distribution in the core region (0.0 to 

15.0 cm) compared to the S8 solution; this is due to an overestimation of the leakage term 

in the void-like region. Note that the integrated leakage term estimated by the EP-SS8 

method in the void-like region, is equal to 8.46280e-04 particles/sec while the S8 method 

yields 6.61564e-05 particles/sec in the same region. Hence, due to the underestimation of 

the scalar flux in the core region, the criticality eigenvalues obtained in case 1 with the 

EP-SSN method are also underestimated. Figures 6-25 show the EP-SS8 predicted flux 

distributions for both cases in both energy groups. 

  

  
Figure 6-25. Scalar flux distributions. A) Case 1 energy group 1, B) Case 2 energy group 

1, C) Case 1 energy group 2, D) Case 2 energy group 2. 
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Figure 6-25A and C clearly show the flat scalar flux distribution in the void-like 

region for both energy groups. In contrast, Figure 6-25D shows a pronounced flux 

depression in the control rod region in energy group 2. Note, that transport effects are 

significant in case 2, due to a steep flux gradient in the control rod region in the thermal 

range. However for this case, the EP-SSN method (N>2) yields an accurate solution due 

to its higher order angular representation of the particle flux. 

6.4.7 Small Fast Breeder Reactor (FBR) Criticality Benchmark Problem 

The small FBR benchmark problem has also been proposed by Takeda and Ikeda 

and it is part of the OECD/NEA 3-D Neutron Transport Benchmarks. Views of the model 

on the x-y and x-z planes are shown in Figure 6-26 and 6-27 respectively. 

 
Figure 6-26. View on the x-y plane of the small FBR model. 
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Figure 6-27. View on the x-z plane of the small FBR model. 

For this benchmark two cases have been considered: in case 1 the control rod is 

fully withdrawn from the reactor and the channel is filled with sodium; in case 2 the 

control rod is half-inserted as shown in Figure 6-27. Note that the control rod introduces 

strong transport effects; however, no void-like regions are present for this problem, hence 

the EP-SSN method is expected to yield relatively accurate solutions. The model is 

discretized with a 5 cm uniform mesh, which is the reference mesh size used in the 

benchmark; also, four-group cross-sections are used in these calculations. 

The criticality eigenvalues (keff) obtained for this problem are given in Table 6-16, 

along with the relative error compared to the Monte Carlo reference solutions. 
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Table 6-16. Criticality eigenvalues for the small FBR model. 
Case 1 - Control rod withdrawn Case 2 - Control rod half-inserted 

Method keff ∆keff
5

 (pcm) Method keff
 ∆keff

d (pcm) 
Monte Carlo 0.9732±0.0002 - Monte Carlo 0.9594±0.0002 - 

EP-SS2 0.96888 -443.90 EP-SS2 0.95467 -493.02 
EP-SS4 0.97388 69.87 EP-SS4 0.96017 80.26 
EP-SS6 0.97396 78.09 EP-SS6 0.96024 87.55 
EP-SS8 0.97394 76.04 EP-SS8 0.96026 89.64 

 
Higher order EP-SSN methods yield relatively accurate results compared to Monte 

Carlo; however, note that keff relative differences are higher for case 2. This can be 

attributed to the strong transport effects introduced by the control rod. The CRWs (Eq. 

6.4) obtained with the EP-SSN and Monte Carlo methods are given in Table 6-17. 

Table 6-17. CRWs estimated with the EP-SSN and Monte Carlo methods. 
Method CRW 

Monte Carlo 1.47e-02 
EP-SS2 1.54e-02 
EP-SS4 1.47e-02 
EP-SS6 1.47e-02 
EP-SS8 1.46e-02 

 
Except for the SS2 order, all the other SSN orders yield a very accurate CRW 

compared to the Monte Carlo solution. Figures 6-28 and 6-29 show the 3-D scalar flux 

distribution obtained with the EP-SS8 method for both cases in energy groups 1 and 4, 

respectively. In Figure 6-28A and 6-29A the effect of the sodium channel is visible, 

especially in group 4, where neutron moderation occurs. In Figures 6-28B and 6-29B, the 

flux distortion due to the half-inserted control rod is clearly noticeable. 

 

 

 
 

                                                 
5The relative difference with Monte Carlo is calculated in pcm as ∆keff=1.0e5*[keff(EP-SSN)-
keff(MC)]/keff(MC). 
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Figure 6-28. Scalar flux distribution in energy group 1: A) Case 1; B) Case 2. 

 

Figure 6-29. Scalar flux distribution in energy group 4: A) Case 1; B) Case 2. 
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6.4.8 The MOX 2-D Fuel Assembly Benchmark Problem 

The MOX 2-D Fuel Assembly benchmark problem44 has been proposed by 

NEA/OECD to test the current capabilities of radiation transport codes to perform whole-

core calculations without spatial homogenization. For this benchmark both 2-D and 3-D 

versions of the problem were developed and accurate Monte Carlo solutions were 

obtained. The benchmark problem is the sixteen assembly (quarter core symmetry) C5 

MOX fuel assembly problem proposed by Cavarec.46 The 2-D mesh distribution is shown 

in Figure 6-30. 

 
Figure 6-30. Mesh distribution of the MOX 2-D Fuel Assembly Benchmark problem. 

The model consists of 81 coarse meshes, discretized with a total of 112,425 fine 

meshes. I have calculated the criticality eigenvalue and power distribution for this 

problem with the EP-SSN method. Table 6-18 shows the criticality eigenvalues (keff) 
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calculated with different EP-SSN method and their relative error compared to the 

Refrence Monte Carlo solution.44 

Table 6-18. Criticality eigenvalues and relative errors for the MOX 2-D benchmark 
problem. 

Method keff 
Relative error 

(pcm) 
Monte Carlo 1.86550 - 

EP-SS2 1.19335 573.0901 
EP-SS4 1.19017 305.0862 
EP-SS6 1.1907 349.7535 

 
The EP-SS4 method yields the most accurate solution in terms of the criticality 

eigenvalue. The increased accuracy obtained with the EP-SS4 method compared to the 

diffusion method is due to the better representation of the transport effects due to 

heterogeneous regions with fuel-moderator interfaces. The accuracy obtained with the 

EP-SS6 method slightly degrades due to the fact that the spatial mesh is not refined for 

increasing SSN orders. 

The power distribution, normalized over the number of fuel pins,44 estimated for 

the inner UO2 fuel assembly (see Figure 6-30) is 485.3, which differs by -1.5% compared 

to the MCNP reference solution (492.8±0.1%). For the MOX and the outer UO2 fuel 

assemblies, I estimated a normalized power equal to 212.2 and 144.4, respectively. These 

results differ by ~0.3% and ~3.3% as compared to the Monte Carlo results (MOX: 

211.7±0.18%, Outer UO2: 139.8±0.20%), respectively. Note that the EP-SS2 solution was 

obtained in 30 minutes running on 27 processors with spatial decomposition; the EP-SS4 

solution required 52.5 minutes on 18 processors with a hybrid domain decomposition (2-

angle, 9-space), while the EP-SS6 method took 86.3 minutes on 81 processors (3-angle, 

27-space) . The EP-SS2 and EP-SS4 solutions were obtained on the PCPENII Cluster 

owned by the Nuclear & Radiological Department at the University of Florida. The EP-
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SS6 solution was obtained on the Zeta-Cluster (64 processors) and Kappa-Cluster (40 

processors), part of the CARRIER Computational Lab Grid at the University of Florida. 

Figure 6-31 shows the scalar flux distribution for each energy group obtained with the 

EP-SS4 method. 

 
Figure 6-31. Scalar flux distribution for the 2-D MOX Fuel Assembly benchmark 

problem (EP-SS4): A) Energy group 1; B) Energy group 2; C) Energy group 
3; D) Energy group 4; E) Energy group 5; F) Energy group 6; G) Energy 

group 7. 

Figure 6-32 shows the normalized pin power distribution obtained with the EP-SS4 

method. 
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A B 

 

Figure 6-32. Normalized pin power distribution for the 2-D MOX Fuel Assembly 
benchmark problem (EP-SS4): A) 2-D view; B) 3-D view. 
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CHAPTER 7 
PARALLEL ALGORITHMS FOR SOLVING THE EP-SSN EQUATIONS ON 

DISTRIBUTED MEMORY ARCHITECTURES 

This chapter describes the parallel algorithms developed for the PENSSn code in 

distributed-memory architectures. I will describe the domain decomposition strategies 

developed, including spatial, angular and hybrid (spatial/angular) decompositions. 

The parallel performance of PENSSn for a test problem, based on the speed-up, 

parallel efficiency and parallel fraction of the code is measured. Further, the parallel 

efficiency of the Krylov subspace based iterative solvers, and a methodology to improve 

their performance are discussed. 

Finally, I will present the parallel performance obtained with PENSSn for the 

solution of the MOX 2-D Fuel Assembly Benchmark problem discussed in Chapter 6. 

7.1 Parallel Algorithms for the PENSSn Code 

PENSSn is designed to run on distributed memory architectures, where each 

processor is an independent unit with its own memory bank. This type of architecture is 

composed usually of PC-workstations linked together via a network backbone. The 

interconnection scheme among the processors is fundamental for distributed memory 

architectures because it affects, in part, the performance of the system. For cluster-type 

architectures, the processors are connected using a switch, which allows data transfer 

among the units. 

For this type of system, the limited bandwidth available for processor 

intercommunication can be a limiting factor. Current network switches are capable of 
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1/10 GBit/sec bandwidth. Therefore, the parallel algorithm must minimize the 

communication time in order to yield an acceptable parallel performance. 

PENSSn is written in Fortran-90 and it is parallelized with the MPI (Message 

Passing Interface) libraries.27 This approach guarantees full portability of the code on a 

large number of platforms. The code solves the multigroup EP-SSN equations with 

anisotropic scattering of arbitrary order for fixed source and criticality problems. 

Three decomposition strategies have been implemented: spatial, angular and hybrid 

(spatial/angular) domain decompositions. The basic philosophy of this approach is to 

decompose part of the phase space on the processors, through a mapping function which 

defines the parallel virtual topology. 

The mapping function or parallel vector, assigns portions of the domain to the 

processors; hence the calculation is performed locally by each processor on the allocated 

sub-domain. Note that on each processor only part of the domain is allocated in memory; 

this type of approach is defined as parallel memory, and it allows solving large problems 

which would be impossible to solve on a single workstation. 

The main advantages of a parallel algorithm can be summarized in parallel tasking 

and memory partitioning. The first aspect relates to the computation time reduction 

achievable with a parallel computer; in an ideal situation, where no communication time 

is considered, p processors would solve the problem p-times faster than a single unit. In 

the remainder of this chapter, I will show that in practice, this level of performance is not 

achieved.  

Memory partitioning allows the subdivision of the problem in RAM memory, 

hence, allowing the treatment of large simulation models. This aspect also eliminates the 
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need for scratch files on hard drives; the overall performance benefits from this aspect 

due to faster access of memory banks compared to hard drives. 

7.2 Domain Decomposition Strategies 

In order to parallelize the EP-SSN equations, we partition the spatial domain into a 

number of coarse meshes and allocate them to different processors. Similarly, the angular 

domain is partitioned by allocating individual angles or groups of angles to each 

processor. The hybrid spatial and angular domain decomposition allows for simultaneous 

processing of spatial and angular sub-domains. Once the system is partitioned and the 

parallel vector is specified, the PENSSn code proceeds to sequentially allocate different 

sub-domains onto different processors, generating the so-called virtual topology. 

7.2.1 Angular Domain Decomposition 

The angular domain is partitioned based on a decomposition vector, which assigns 

the angles or group of angles to independent processors. Each processor locally solves 

angular fluxes for a subset of the total angular domain. After an inner iteration is 

completed, the moments of the even-parity angular flux are calculated using collective 

operations of the MPI library to minimize the communication overhead and to maintain 

data parallelism. In the PENSSn code, a subroutine is dedicated for the angular 

integration of the even-parity angular fluxes on the parallel environment, yielding total 

quantities such as scalar flux, currents, etc. The collective operation MPI_ALLREDUCE 

is used for this purpose;27 note that when angular integration is performed, the values of 

the total quantities are also updated on each processor. Hence, this subroutine represents 

also a synchronization point. 
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7.2.2 Spatial Domain Decomposition 

The spatial domain is partitioned into coarse meshes, as discussed in Chapter 5; 

each coarse mesh is then sequentially allocated to the processors through a decomposition 

vector. Every processor solves for the even-parity angular fluxes only on its assigned 

spatial sub-domain. The synchronization algorithm consists of a master/slave algorithm 

and a scheduling array, which contains information related to the allocation of the phase-

space on every processor. The master/slave algorithm consists of a paired 

MPI_SEND/MPI_RECEIVE between two processors which share a coarse mesh 

interface. The scheduling array toggles each processor between send and receive modes, 

and it provides information on which portion of the phase-space has to be transferred. 

Note that before the sending processor initiates the communication phase, the projection 

algorithm, described in Chapter 5, is invoked. When every processor has updated the 

interface values on each coarse mesh, the calculation is continued. As for the angular 

decomposition algorithm, this point represents a synchronization phase. 

7.2.3 Hybrid Domain Decomposition 

The hybrid domain decomposition is a combination of spatial and angular 

decompositions. The hybrid decomposition takes advantage of both speed-up and 

memory partitioning offered by the angular and spatial decomposition, respectively. This 

decomposition strategy is based on the same algorithms described in the previous 

sections. Figure 7-1 shows an example of hybrid domain decomposition. 
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Figure 7-1. Hybrid decomposition for an EP-SS6 calculation (3 directions) for a system 

partitioned with 4 coarse meshes on 6 processors. 

7.3 Parallel Performance of the PENSSn Code 

The parallel performance of PENSSn is assessed using a test problem composed of 

64 coarse meshes; each coarse mesh is discretized with 4,000 fine meshes for a total of 

256,000 fine meshes. The problem is characterized by a homogeneous material with one-

group P0 cross-sections; the total cross-section is equal to 1.0 cm-1, while the scattering 

cross-section is equal to 0.5 cm-1. A uniform distributed source is present in the system, 

emitting 1.0 particles/cm3/sec. An SS8 order is used for the calculations, which yields a 

total of 4 directions. Reflective boundary conditions are prescribed on boundary surfaces 

at x=0.0 cm, y=0.0 cm, z=0.0 cm, and vacuum boundary conditions are prescribed at 

x=24.0 cm, y=24.0 cm, z=24.0 cm. The convergence criterion for the angular flux is set to 

1.0e-4, while it is set to 1.0e-6 for the Krylov solver. 

Calculations have been performed on two different PC-Clusters: PCPENII at the 

Nuclear & Radiological Engineering Department and the Kappa Cluster at the Electrical 
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and Computer Engineering Department, part of the CARRIER Computational Lab Grid. 

The specifications for the PCPENII Cluster are the following: 

• 8 nodes (16 processors) Dual Intel Xeon processors with 2.4 GHz clock frequency, 
with hyper-threading 

• 4 GB per node of DDR RAM memory on a 533 MHz system bus. 
• 1 Gb/s full duplex Ethernet network architecture. 
• 40 GB hard drives per each node. 
• 512 KB L2 type cache memory for each processor. 
 
The Kappa Cluster has the following technical specifications: 

• 20 nodes (40 processors) Dual 2.4GHz Intel Xeon processors with 533MHz front-
side bus with hyper-threading. 

• Intel server motherboard with E7501 Chipset. 
• On-board 1 Gb/s Ethernet. 
• 1GB of Kingston Registered ECC DDR PC2100 (DDR266) RAM. 
• 40GB IDE drive @ 7200 RPM. 
 

The analysis of the parallel performance of PENSSn is based on the definition of 

speed-up, parallel efficiency and parallel fraction. The speed-up is the direct measure of 

the time reduction obtained due to parallel tasking; the mathematical definition of speed-

up is given by 

p

s
p T

TS = ,     (7.1) 

where p is the number of processors, Ts is the wall-clock time for the serial run and Tp is 

the wall-clock time for the parallel run on p processors. 

The parallel efficiency measures the performance of the domain decomposition 

algorithm. The definition of parallel efficiency is given by 

p
S p

p =η .     (7.2) 

The speed-up and parallel efficiency are affected by communication time and idle time 

for each processor, by load-imbalance, and by the parallel fraction in the Amdahl’s law. 
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Finally, using the Amdahl’s law for expressing the theoretical speed-up, we can 

estimate the parallel fraction. 

s

cp
p

p

T
T

p
f

f
S

++−
=

)1(

1 ,    (7.3) 

where  fp is the parallelizable fraction of the code running on p processors and Tc is the 

parallel communication time. Eventually all these quantities are affected by the load-

imbalance, which may be caused by the different amount of workload. Figure 7-2 shows 

the speed-up obtained for different decomposition strategies on the two PC Clusters. 
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Figure 7-2. Speed-up obtained by running PENSSn on the Kappa and PCPENII Clusters. 

In Figure 7-2, the “decomposition strategy” refers to the number of processors and 

the type of decomposition used; “S” refers to spatial decomposition and “A” refers to 

angular decomposition, and “/” identifies hybrid decompositions. Except for the 8-spatial 

domain decomposition, the speed-up is comparable for the two clusters up to 4 

processors. The maximum speed-up achieved is 5.27 and 4.62, for the PCPENII and 

Kappa Cluster, respectively, for a spatial-decomposition strategy on 16 processors. Note 

that as the number of processors increases, the speed-up obtained does not increase as 
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well. This behavior is directly related to the concept of granularity and to the 

communication time. The granularity represents the amount of work-load available to 

each processor; a large grain size leads to a more efficient usage of the machines. In 

contrast, a small grain size leads to a large communication overhead and, hence, to lower 

parallel efficiencies. By increasing the number of processors for a fixed problem size, we 

effectively reduce the granularity with subsequent degradation of the speed-up and 

parallel efficiency as shown in Figure 7.3. 
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Figure 7-3. Parallel efficiency obtained by running PENSSn on the Kappa and PCPENII 
Clusters. 

The spatial discretization of the test problem does not introduce any load imbalance 

per se; however, Figure 7-3 shows a difference in terms of parallel efficiency between the 

angular- and spatial-decomposition strategies on the same number of processors. This 

difference is due to load imbalance introduced by the Krylov iterative solver. Table 7-1 

presents the data supporting the load imbalance generated by the Krylov solver. 
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Table 7-1. Data relative to the load imbalance generated by the Krylov solver. 

Decomposition Processor Direction Krylov 
iterations 

Communication 
+ Idle Time 

(sec) 

Grain 
size 

2A/1S 1 µ1 9749 83.769 28.5% 
  µ2 32796   
 2 µ3 48877 3.967 71.5% 
  µ4 57804   

 
The current strategy for partitioning the phase-space on each processor is based on 

a sequential allocation of sub-domains. However, processor 1 is characterized by a 

smaller grain size compared to processor 2; therefore, the idle time of processor 1 is 

much larger than processor 2. This is a clear example of load imbalance and its effect is 

observed in the relatively low speed-up of 1.41 and parallel efficiency of 70.3%. This 

behavior is not observed for the spatial decomposition where the entire angular domain is 

locally stored on each processor. 

Table 7-1 shows also a measure of the grain size as the ratio between the total 

number of Krylov iterations required by each processor and the total number of Krylov 

iteration required by all the processors. Note that the load imbalance is clearly shown by 

the grain size calculated on each processor that is 28.5% and 71.5% on processors 1 and 

2, respectively. 

Theoretically, the load imbalance due to the Krylov solvers could be overcome by 

adopting an automatic load balancing algorithm. As discussed in Chapter 6, the spectral 

condition number for the matrix operators increases as the direction cosine approaches 

unity. Based on these results, the sequential allocation of the angular sub-domains is not 

optimal. The best angular decomposition algorithm is based on progressively pairing the 

directions which yield the highest and lowest spectral condition numbers. 
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Figure 7-4. Angular domain decomposition based on the automatic load balancing 

algorithm. 

Figure 7-4 shows the angular domain partitioning based on the automatic load 

balancing algorithm. If this algorithm is applied, the grain size would change to 45.3% 

and 54.7% for processor 1 and 2, respectively. 

To complete the analysis of the parallel performance of PENSSn, I have calculated 

the parallel fraction of the code, by using the Amdahl’s law in Eq. 7.3. Figure 7-5 shows 

the speed-up obtained on the PCPENII cluster compared to the theoretical speed-up 

predicted by the Amdhal’s Law when the communication time is neglected. 
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Figure 7-5. Parallel fraction obtained with the PENSSn code. 
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I obtained a 87% parallel fraction (fp) with a maximum relative difference of 19% 

between the theoretical speed-up prediceted by the Amdahl’s law and the speed-up 

observed on PCPENII. Tables 7-2 and 7-3 summarize the supporting data associated with 

the PCPENII and Kappa Clusters respectively. 

Table 7-2. Parallel performance data obtained on PCPENII Cluster. 

DD # of 
processors 

Parallel 
Vector 

Wall-clock 
time (sec) Speed-up Efficiency Memory 

MB/proc 
Parallel 
Fraction 

Serial 1 1A/1S 207.4 - - 158.8 - 
S 2 1A/2S 116.24 1.78 89.2% 73.2 88.0% 
A 2 2A/1S 147.58 1.41 70.3% 79.9 61.6% 
S 4 1A/4S 67.95 3.05 76.3% 43.1 89.8% 
A 4 4A/1S 84.28 2.46 61.5% 53.2 84.1% 
H 4 2A/2S 86.04 2.41 60.3% 46.4 78.4% 
S 8 1A/8S 42.68 4.86 60.7% 28 90.8% 
H 8 2A/4S 50.09 4.14 51.8% 29.7 86.9% 
H 8 4A/2S 49.78 4.17 52.1% 33.1 87.1% 
S 16 1A/16S 39.32 5.27 33.0% 20.5 86.5% 

DD stands for Domain Decomposition (A – Angular, H – Hybrid, S – Spatial). 
 

Table 7-3. Parallel performance data obtained on Kappa Cluster. 

DD # of 
processors 

Parallel 
Vector 

Wall-clock 
time (sec) Speed-up Efficiency Memory 

MB/proc 
Parallel 
Fraction

S 2 1A/2S 116.14 1.76 88.1% 73.2 86.9% 
A 2 2A/1S 145.58 1.41 70.3% 79.9 61.7% 
S 4 1A/4S 63.55 3.22 80.5% 43.1 92.1% 
A 4 4A/1S 82.11 2.49 62.3% 53.2 83.6% 
H 4 2A/2S 82.2 2.49 62.3% 46.4 80.2% 
S 8 1A/8S 71.9 2.85 35.6% 28 74.3% 
H 8 2A/4S 47.45 4.31 53.9% 29.7 88.0% 
H 8 4A/2S 51.08 4.01 50.1% 33.1 86.0% 
S 16 1A/16S 44.32 4.62 28.9% 20.5 83.6% 
H 16 2A/8S 55.42 3.69 23.1% 21.4 77.9% 
H 16 4A/4S 47.25 4.33 27.1% 23 82.3% 
S 32 1A/32S 49.29 4.15 13.0% 16.8 78.4% 
S 64 1A/64S 54.19 3.78 5.9% 14.9 74.8% 

 
These results indicate that the PENSSn code is characterized by a relatively high 

parallel performance; also the PCPENII and Kappa Clusters yield almost the same 

performance. The main advantage of the PCPENII Cluster is the large amount of memory 
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available, which allows the simulation of large 3-D models without compromising the 

parallel performance due to communication overhead. 

7.4 Parallel Performance of PENSSn Applied to the MOX 2-D Fuel Assembly 
Benchmark Problem 

The MOX 2-D benchmark problem discussed in Chapter 6 is used to assess the 

parallel performance of PENSSn for a large criticality eigenvalue problem. The problem 

specifications are discussed in Chapter 6, and an SS4 order is used for the performance 

testing. Table 7-4 presents the parallel performance data obtained on the PCPENII 

Cluster. 

Table 7-4. Parallel performance data for the 2-D MOX Fuel Assembly Benchmark 
problem (PCPENII Cluster). 

Decomposition 
Strategy 

Number 
of 

processors

Parallel 
Vector 

Wall-clock 
time (sec) Speed-up Efficiency Memory 

MB/proc 

Serial 1 1A/1S 511.0 1.0 - 341.6 
Angular 2 2A/1S 263.7 1.9 95.0% 202.0 
Spatial 3 1A/3S 198.7 2.6 86.6% 105.3 
Hybrid 6 2A/3S 132.6 3.9 65.0% 71.7 
Spatial 9 1A/9S 107.3 4.8 53.3% 39.5 

 
Note that for this problem the angular decomposition yields the best speed-up, 

because for the low order SSN methods the load-imbalance due to the Krylov solver is not 

so significant. For this problem, high order EP-SSN methods provided a relatively 

accurate solution, both in terms of criticality eigenvalue and power distribution. As 

indicated, the hybrid decomposition is used mainly to increase the speed-up. Moreover, 

the PENSSn code yielded good parallel performance both in terms of speed-up and 

memory utilization. 
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CHAPTER 8 
DEVELOPMENT OF A NEW SYNTHETIC ACCELERATION METHOD BASED ON 

THE EP-SSN EQUATIONS 

The inversion of the transport operator is obtained using the Source Iteration or 

Richardson iteration method. It is known that this iterative technique is very ineffective 

for problems with optically thick regions and scattering ratio close to unity. In these 

conditions, the spectral radius of the transport operator tends to unity and the 

convergence process becomes very slow.3 Hence, it is necessary to develop acceleration 

schemes which can increase the rate of convergence.17 In principle, synthetic acceleration 

schemes consist of two distinct operators: a higher order operator (e.g., SN) and a lower 

order operator, usually a diffusion-like equation. The idea is to correct the solution of the 

diffusion-like equation using the transport solution, with subsequent acceleration of the 

convergence process. 

In the late 1960s, Gelbard and Hageman developed a synthetic acceleration method 

based on the diffusion equation and the S4 equations.28 Later, Reed independently derived 

a similar synthetic acceleration scheme40 and pointed out some limitations of the method 

derived by Gelbard and Hageman. The synthetic method developed by Reed has the 

advantage of being very effective for small mesh sizes, but it is unstable for mesh size 

greater than ~1 mfp. Later, Alcouffe independently derived the Diffusion Synthetic 

Acceleration (DSA) method. He addressed the issue of stability of the method and 

derived an unconditionally stable DSA algorithm.29 Alcouffe pointed out that in order to 

obtain an unconditionally stable method, the diffusion equation must be derived from the 
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discretized version of the transport equation. In this way, the consistency between the two 

operators is preserved. However, Warsa, Wareing and Morel, recently observed a loss in 

the effectiveness of DSA schemes, especially for multi-dimensional heterogeneous 

problems.31-32 

This chapter addresses the development of a new synthetic acceleration method 

based on the EP-SSN method. Since the discretization of the EP-SSN equations is not 

consistent with the discretization of the SN method, the acceleration method is limited to 

mesh sizes up to ~1 mean free path. The first part of this chapter discusses the theory 

involved in developing the EP-SSN synthetic acceleration method, and the second part 

presents the numerical results obtained for a test problem. The performance of the EP-

SSN synthetic acceleration algorithm will be compared with the Simplified Angular 

Multigrid (SAM) acceleration method.39 In conclusion, I will point out strengths and 

weaknesses of the new method, and I will build the foundations for the FAST (Flux 

Acceleration Simplified Transport) preconditioning algorithm, discussed in Chapter 9. 

8.1 The EP-SSN Synthetic Acceleration Method 

This section describes the general theory of a general synthetic acceleration method 

and, hence, its application to the solution of the SN equations. 

Solutions to many engineering problems of practical interest can be obtained via a 

balance equation written in operator form as follows 

qKfTf += .     (8.1) 

In the case of the SN equations, the operators T and K are defined as 

tT σ+∇⋅Ω=
rˆ ,     (8.2) 

∫ ∫
∞

Ω⋅Ω→Ω=
0

4

)ˆ'ˆ,',(
π

σ EErddEK s
r .     (8.3) 
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Commonly, Eq. 8.1 is solved using the Richardson iterative method formulated as 

qKfTf ll +=+1 .    (8.4) 

In Eq. 8.4, l is the iteration index; hence, by inverting the operator T in Eq. 8.4, we 

obtain the following 

qTMff ll 11 −+ += ,      (8.5) 

where 

KTM 1−= .            (8.6) 

In Eq. 8.5 the operator M is usually referred to as iteration operator. In this 

derivation the spectral radius of the iteration operator is assumed to be less than unity; 

note that this is a realistic assumption for the problems encountered in engineering 

applications. To discuss the synthetic operator, I introduce the residual term given by 

lll ffr −= ++ 11 .    (8.7) 

Using the residual formulation, Eq. 8.5 reduces to 

ii Mrr =+1 .            (8.8) 

The sum over the residuals following the lth iteration is given by 

l

k

lkl r
MI

MrMMr
−

=++=∑
∞

=

+

1

2 ...)( .     (8.9) 

Where, I is the identity matrix. Hence, using the above formulation, the exact solution to 

Eq. 8.5 is obtained by 

∑
∞

=

++=
1k

kll rff ,            (8.10) 

or 

ll r
MI

Mff
−

+= .    (8.11) 
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Note that using the definition of the iteration operator M (Eq. 8.6), Eq. 8.11 reduces to 

ll KrKTff 1)( −−+= .    (8.12) 

Eq. 8.12 is just another formulation for Eq. 8.1 and its solution is as difficult. 

However, Eq. 8.12 separates the solution to Eq. 8.1 into two terms. The synthetic 

acceleration method is based on approximating the high order operator (e.g., transport) 

)( KT −  with a lower order operator WL. The lower order operator must possess two 

fundamental properties in order for the synthetic method to be effective: 1) the lower 

order operator has to be a good approximation to the high order operator; and 2) it has to 

be easy to invert. The synthetic acceleration method formulated based on Eq. 8.12 can be 

written as 

l
L

ll KrWff 12/11 ~ −++ += ,    (8.13) 

where 

qTMff ll 12/1~ −+ += ,             (8.13) 

and 

lll ffr −= + 2/1~ .           (8.14) 

The philosophy of the synthetic acceleration method described above consists in 

utilizing a lower order operator to project the residual term on the sub-space generated by 

the operator K. The projection operation with the low order operator is performed in a 

fraction of the time required for the solution of the higher order operator, thereby 

producing a significant speed-up of the iteration process with a consequent reduction of 

the numerical spectral radius. 

The synthetic acceleration method discussed above can be readily applied to the SN 

equations. The method is designed to accelerate the convergence of the inner iteration in 
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each energy group. In the following derivation we assume isotropic scattering and source 

for simplicity. In this particular case, the high order operator is the transport equation. 

qKH l
S

l
n +=+ φψ 0

2/1~ ,     (8.15) 

where 

tnnH σ+∇⋅Ω=
rˆ ,            (8.16) 

and 

00 sSK σ= .        (8.17) 

In the SI method, the scalar flux ( 0φ ) is initially guessed and substituted into Eq. 

8.15; hence, Eq. 8.15 is solved and the value of the scalar flux at the new iteration is 

simply evaluated by 

∑
+

=

++ =
)2(

1

2/11 ~
NN

n

l
nn

l wψφ ,     (8.18) 

and the iteration process is continued until convergence. The synthetic acceleration 

method described above substitutes the update of the scalar flux in Eq. 8.18, with the 

following expression 

lll p+= ++ 2/11 ~φφ .     (8.19) 

Note that the term indicated with the tilda symbol in Eq. 8.19 is obtained from the 

SN method in Eq. 8.15. The projection of the residual term (pl) on the scattering kernel is 

performed using the EP-SSN equations as follows 

l
SmL

l
m rKWp 0

1
,

~ −= .     (8.20) 

The residual in Eq. 8.20 is calculated as the difference between the transport 

solution and the accelerated solution for the scalar flux 
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lllr φφ −= + 2/1~ ,     (8.21) 

where 

t
t

m
mLW σ

σ
µ

+∇







⋅∇−=

rr 2

, ,          (8.22) 

and 

∑
+

=

=
2/)1(

1
,

~
L

m

l
mem

l pwp .     (8.23) 

The SN equations given in Eq. 8.15 are used to compute an uncollided scalar flux, 

which is then used to evaluate the residual with Eq. 8.21. The residual is then projected 

onto the scattering kernel via the EP-SSN operator. Hence, the inversion of the EP-SSN 

operator generates a projection of the residual onto the scattering kernel, which is then 

used to complete the calculation of the scalar flux at the new iteration using Eq. 8.19. 

8.2 Spectral Analysis of the EP-SSN Synthetic Acceleration Method 

In this section, I will study the theoretical performance of the synthetic acceleration 

method based on the EP-SSN equations. For this purpose I will analyze the spectrum of 

eigenvalues of the synthetic operator in the Fourier transformed space. The performance 

of iterative methods can be assessed by studying the spectral radius. For an infinite 

homogeneous medium, the spectral radius is equal to 

( )ωρ
ω

Λ≡Λ MAX ,     (8.24) 

where ( )ωΛ  represents the spectrum of eigenvalues in the transformed space. In general, 

the spectral radius is an indication of the error reduction for the iterative method at each 

iteration. Hence, if the spectral radius approaches unity the method presents very slow 

convergence. 
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The spectrum of eigenvalues for the EP-SSN synthetic acceleration algorithm can 

be written as 

( ) ( ) ( )
( )ω
ωω

ω
N

N
N A

AA
−
−

=Λ
1

,       (8.25) 

 

where the transport operator in the transformed space is formulated as 

( ) ∫ =
+

=
1

0 22 )arctan(
1

ω
ωωµ

µω cdcA ,    (8.26) 

and the lower order EP-SSN operator is defined by 

( ) ∑
= +

=
N

N
w

cA
1

221α α

α

ωµ
ω .    (8.27) 

It is well known that the spectral radius of the unaccelerated transport operator in 

an infinite homogeneous medium is equal to 

ccAMAXA ==≡
→

)arctan(lim)(
0

ω
ω

ωρ
ωω

.       (8.28) 

Therefore, as discussed in the beginning of this chapter, the unaccelerated source 

iteration method presents very slow convergence for scattering-dominated problems, and 

where the leakage probability is relatively small. Figure 8-1 shows the spectrum of 

eigenvalues for the unaccelerated source iteration and for the synthetic acceleration 

methods obtained with different SSN orders. 
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Figure 8-1. Spectrum of eigenvalues for the Source Iteration and Synthetic Methods 

based on different SSN orders. 

As indicated by Figure 8-1, the spectral radius of different EP-SSN synthetic 

methods decreases with increasing order; this behavior is due to the fact that higher order 

EP-SSn methods resolve higher frequency modes of the spectrum, which are 

characterized by higher order angular dependencies. Also, the spectral radius obtained for 

the different methods are listed in Table 8-1. 

Table 8-1. Spectral radius for the different iterative methods. 

Method Spectral 
Radius 

Source Iteration 0.99 
SS2 Synthetic 0.221391 
SS4 Synthetic 0.109545 
SS6 Synthetic 0.072785 
SS8 Synthetic 0.054489 

 

Based on these results, higher order EP-SSN equations present significantly smaller 

spectral radii than diffusion based synthetic acceleration algorithms and, therefore, better 
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acceleration performance. However, the numerical results will show that in practice 

theoretical performance is not achieved. 

8.3 Analysis of the Algorithm Stability Based on Spatial Mesh Size 

In this section, I will analyze the stability of the EP-SSN synthetic acceleration 

method with respect to the spatial mesh size. In this phase of the investigation, the 

discretization of the EP-SSN formulation is not consistent with the transport operator; 

hence, the stability of the method depends on the size of the spatial mesh. The EP-SSN 

acceleration method has been implemented into the PENTRAN Code System.15 

For this analysis, I have considered a simple 3-D cube with a homogeneous material. The 

size of the cube is 10x10x10 cm3, discretized with a 1.0 cm uniform mesh along the three 

axes. The total cross-section is varied in order to change the dimension of the system in 

terms of mean free paths (mfp), and the c-ratio is set equal to 0.99. The boundary 

conditions prescribed are reflective on the planes at x=0.0 cm, y=0.0 cm, z=0.0 cm and 

vacuum at x=10.0 cm, y=10.0 cm and z=10.0 cm. An isotropic source, with magnitude 

1.0 [n/cm3/sec] is uniformly distributed inside the system. The point-wise convergence 

tolerance for the scalar flux is set to 1.0e-5. Figure 8-2 shows the number of inner 

iteration required by the EP-SSN synthetic methods as a function of the mesh size and 

different order of the lower-order EP-SSN operator. 
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Figure 8-2. Number of inner iterations required by each acceleration method as a function 

of the mesh size. 

Due to the inconsistent discretization of the transport and EP-SSN operators, the 

synthetic acceleration method degrades in terms of performance as the size of the mesh 

increases, and for mesh sizes greater than 1.0 mfp the acceleration technique becomes 

unstable. Table 8-2 compares the EP-SSN synthetic and the unaccelerated transport 

methods based on the number of inner iterations for a 1.0 mfp mesh size. 

Table 8-2. Comparison of the number of inner iteration between EP-SSN synthetic 
methods and unaccelerated transport. 
Method Inner iterations 
EP-SS2 12 
EP-SS4 28 
EP-SS6 38 
EP-SS8 40 

Unaccelerated 
transport 262 

 
The EP-SSN synthetic methods reduce the number of inner iteration from ~6 to ~21 

times with respect to the unaccelerated transport calculation. Note that as the SSN order is 

increased, the acceleration performance is degraded; this behavior is due to the increasing 

number of inner iterations required to solve higher order EP-SSN equations. 



150 

 

8.3.1 Comparison of the EP-SSN Synthetic Acceleration with the Simplified 
Angular Multigrid Method 

The EP-SSN synthetic acceleration method is compared with the Simplified 

Angular Multigrid (SAM).39 I have tested the effects of the scattering ratio and 

differencing schemes on the convergence rate. The test problem is a 10x10x10 cm3 box 

with homogeneous medium. A vacuum boundary condition is prescribed on all surfaces. 

A fixed source of magnitude 1.0 particles/cm3/s is placed in a region ranging from 4 to 6 

cm along the x-, y-, and z-axes. The differencing schemes tested with the PENTRAN 

code are DZ, DTW and EDW. The problem is discretized with a 1.0 cm uniform mesh 

and an S8 level-symmetric quadrature set is used in the calculations. The point-wise flux 

convergence tolerance is set to 1.0e-6. 

Figures 8-3, 8-4, and 8-5 show the number of inner iterations required to converge 

as a function of the scattering ratio for the Source Iteration (SI), SAM and EP-SS2 

synthetic acceleration method, using the DZ, DTW, and EDW differencing schemes, 

respectively. 
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Figure 8-3. Number of inner iterations as a function of the scattering ratio (DZ 
differencing scheme). 
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The synthetic method improves the convergence rate by a factor of ~6.5 for a 

scattering ratio of 1.0. Note also that the performance of the synthetic method is not 

significantly affected by the scattering ratio. 
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Figure 8-4. Number of inner iterations as a function of the scattering ratio (DTW 
differencing scheme). 
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Figure 8-5. Number of inner iterations as a function of the scattering ratio (EDW 
differencing scheme). 

As shown in Figures 8-4 and 8-5, the synthetic acceleration method improves the 

convergence rate compared to the SI and SAM methods. For the DTW and EDW 
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schemes the synthetic method reduces the number of inner iterations by a factor of ~10 

and ~8, respectively. The inconsistent discretization of the operators does not yield 

significant instabilities in these cases; this is due to the fact that the fine-mesh size is 

adequate to yield a stable acceleration scheme. 

Figure 8-6 shows a comparison of the number of inner iterations for the synthetic 

method with DZ, DTW, and EDW differencing schemes. 
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Figure 8-6. Number of inner iterations for the EP-SS2 synthetic method obtained with 
DZ, DTW, and EDW differencing schemes. 

All the differencing schemes perform similarly for scattering ratios up to 0.7; 

however, for scattering ratios greater than 0.8, the DTW differencing scheme yields the 

best convergence performance. The degraded performance of the DZ differencing 

scheme is due to the flux fix-up performed on the solution. The EDW differencing 

scheme degrades the performance of the synthetic method, because for scattering ratios 

close to unity, the physics of the problem is dominated by scattering processes, while the 

EDW differencing scheme predicts an exponential behavior of the particle flux. 
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8.4 Limitations of the EP-SSN Synthetic Acceleration Method 

Based on the analysis of the EP-SSN synthetic acceleration method, I have 

identified the following limitations: 

• Stability of the method is dependent on a mesh size smaller than 1.0 mfp. 
• The method is affected by numerical oscillations for multidimensional problems 

with heterogeneous materials. 
• Domain decomposition algorithms in parallel computing environments may worsen 

the performance of the synthetic method. 
 

As previously discussed, these limitations are mainly due to the inconsistent 

discretization of the transport and EP-SSN operators. However, if this condition is met, it 

does not necessarily imply unconditional stability of the method. Hence, for large 

heterogeneous multi-dimensional problem, this method is of limited applicability with 

current formulations. 

To address this problem, I have decoupled the SN and EP-SSN methods by using the 

last one as a preconditioner. The philosophy behind this approach is to use the PENSSn 

code to obtain an initial solution in a fraction of the time required by the transport 

calculation; then the solution is introduced as an initial guess into the transport code. This 

approach has led to the development of the Flux Acceleration Simplified Transport 

(FAST©) system, which is a fully automated preconditioning system for the discrete 

ordinates method. 
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CHAPTER 9 
FAST©: FLUX ACCELERATION SIMPLIFIED TRANSPORT PRECONDITIONER 

BASED ON THE EP-SSN METHOD 

In this chapter, I will discuss the development and implementation of FAST© in the 

PENTRAN Code System. FAST© is based on the PENSSn code and it is a fully 

automated system, which is integrated into PENTRAN-SSn. The FAST© algorithm is 

used to precondition and speed-up both criticality and fixed source calculations. 

I will present the performance of the new system for both criticality and shielding 

calculations. Three problems with significant transport effects will be used to asses the 

capability of the algorithm. The first problem was introduced in Section 6.4.3, and it is 

characterized by regions of air and a considerable leakage probability. The second 

problem, introduced in Section 6.4.5, will demonstrate the effectiveness of the FAST© 

algorithm in dealing with fixed source problems characterized by anisotropic scattering. 

The third problem is a 3-D whole-core calculation based on the MOX 3-D Fuel Assembly 

Benchmark extension47 proposed by OECD/NEA. For these test problems, I will discuss 

the speed-up obtained with FAST© compared to a conventional transport calculation 

without preconditioning. 

9.1 Development and Implementation of FAST© 

The FAST© code is derived from the PENSSn code described in Chapters 6 and 7; 

the code retains every feature of PENSSn, except for balance table generation and 

advanced input features which are part of the stand-alone code only. These modifications 

have been necessary in order to completely integrate the code into PENTRAN-SSn. The 
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system is fully automated and in order to invoke it, only an additional input card is 

required in a standard PENTRAN deck, as shown in Figure 9-1. 

  

Figure 9-1. Card required in PENTRAN-SSn input deck to initiate SSN preconditioning. 

More details about the usage of the FAST© preconditioner can be found in the 

PENTRAN manual.48 The SSN card is used to instruct PENTRAN to generate the files 

needed by the FAST© algorithm such as problem definition, cross-sections and fixed 

source distribution. The FAST© algorithm prepares the initial solution for the SN code 

and creates output files for scalar flux, currents, and criticality eigenvalue. The output 

files are dumped for each energy group and they are split into file_a for the first half of 

the spatial domain and file_b for the second half. This format is used to contain the file 

sizes under the limits handled by current operating systems. The files containing the 

initial solution are read successively by PENTRAN and used as initial guess for starting 

the calculation. Figure 9.2 shows the flowchart for PENTRAN-SSn system. 
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Figure 9-2. Flow-chart of the PENTRAN-SSn Code System. 

As shown in Figure 9-2, the transport calculation is composed of three main 

phases: Phase 1 consists of processing the input deck and generating input files for the 

FAST© algorithm; in phase 2, the FAST© preconditioning algorithm generates the initial 

solution and dumps it to the output files; phase 3 completes the transport calculation by 

running the preconditioned PENTRAN-SSn code. 
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As I will show in the next sections, the FAST© preconditioner produces an accurate 

solution within a fraction of the computation time required by a standard transport 

calculation; hence, by starting the transport calculation with this initial solution, 

convergence is rapidly achieved. The acceleration performance can also be explained  in 

terms of the Fourier transform of the transport operator. The Maclaurin expansion of the 

transport operator in the frequency domain for 0≈λ  is given by 

( ) ( )21
1

1, λλµ
λµ

µλ oi
i

A +−=
+

= .    (9.1) 

Note that 0≈λ  modes correspond to low-frequency Fourier eigenmodes and, 

hence, to long wavelengths; these are error modes that span large optical distances and 

have weak spatial gradients. The low-frequency Fourier modes formulated in Eq. 9.1 

have also weak angular dependencies. These modes of the spectrum are rapidly resolved 

by diffusive-like algorithms such as EP-SSN, while the standard SI method efficiently 

suppresses the error modes with strong spatial and angular variations, where 0>>λ . 

Here, the preconditioning phase quickly resolves the low-frequency error modes, while 

the successive transport calculation resolves the remaining high-frequency modes. 

9.2 Testing the Performance of the FAST© Preconditioning Algorithm 

In this section, I will present the results obtained with the FAST© preconditioner 

and PENTRAN-SSn for a criticality eigenvalue, a fixed source, and the MOX 3-D Fuel 

Assembly benchmark problems. 

9.2.1 Criticality Eigenvalue Problem 

The objective of this test is to verify the performance of FAST© and PENTRAN-

SSn for a criticality eigenvalue problem characterized by significant transport effects. 

The problem considered is described in Section 6.4.3. The system is characterized by air 
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regions where the EP-SSN method is also affected by numerical difficulties. In order to 

remedy this issue, I have utilized the Density Factor Multiplier (DFM) described in 

Section 6.4.3. 

I have calculated the ratio of the total number of inner iterations required to solve 

the problem with the preconditioned PENTRAN-SSn and with the non-preconditioned 

PENTRAN. Figure 9-3 presents this ratio for different EP-SSN methods with DFM 

disabled and enabled. 
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Figure 9-3. Ratio of total number of inner iterations required to solve the problem with 
preconditioned PENTRAN-SSn and non-preconditioned PENTRAN. 

Two aspects are clearly apparent in Figure 9-3; in first instance, the acceleration 

performance obtained with DFM enabled is obviously superior to the case where DFM is 

disabled. Also, by enabling DFM, the convergence of the EP-SSN method is significantly 

improved, as well as the accuracy of the solution, as shown in Table 9-1. Note that by 

disabling DFM, all the EP-SSN methods did not converge within the maximum number of 

outer iterations set to 50. 
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Table 9-1. Criticality eigenvalues obtained with the preconditioned PENTRAN-SSn code 
for different EP-SSN orders. 

 DFM Disabled DFM Enabled 
Method FAST© PENTRAN-SSn FAST© PENTRAN-SSn 
EP-SS2 0.69437 0.95212 0.77621 0.95213 
EP-SS4 0.83097 0.95212 0.90544 0.95212 
EP-SS6 0.8464 0.95213 0.92138 0.95212 
EP-SS8 0.84894 0.95213 0.92436 0.95215 

 
Figure 9-3 shows also that higher order EP-SSN methods improve the acceleration 

performance of PENTRAN-SSn. This behavior is expected since the air regions and the 

significant boundary leakage introduce substantial angular dependency; hence, as 

predicted high order EP-SSN methods yield a more accurate solution and better 

acceleration performance. 

9.2.2 Fixed Source Problem 

The purpose of this test problem is to evaluate the performance of the FAST© 

algorithm in accelerating fixed source calculations. The problem configuration is 

described in section 6.4.5. I have preconditioned PENTRAN-SSn using the EP-SS4 and 

EP-SS6 methods. Figures 9-4 and 9-5 show the relative change in flux value as a function 

of the inner iteration number for energy groups 1 and 2. 

In group 1, the non-preconditioned calculation presents a slight error reduction in 

the first 8 iterations, while PENTRAN-SSn logarithmically reduces the relative error 

from the first iteration. This behavior is due to the capability of the EP-SSN method of 

resolving the low-frequency error modes and, hence, to bypass the plateau region where 

the SI method alone is experiencing difficulties in reducing the error. 
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Figure 9-4. Relative change in flux value in group 1. 

Figure 9-5 shows a similar behavior for energy group 2. Due to the small size of 

this problem the speed-up obtained with PENTRAN-SSn is roughly equal to a factor of 2. 

It is also worth noticing that the EP-SS4 method is sufficient to provide an accurate 

solution for an efficient preconditioning; the EP-SS6 method does not yield significant 

benefits and, actually, it requires more computation time. This behavior can be explained 

by considering that the EP-SS6 method does not introduce a far more accurate solution 

compared to EP-SS4; however, the computational time required by FAST© for EP-SS6 

increases by ~60%, therefore explaining the behavior discussed above. 
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Figure 9-5. Relative change in flux value in group 2. 
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9.3 The MOX 3-D Fuel Assembly Benchmark Problem 

The MOX 3-D Fuel Assembly Benchmark problem extension47 has been proposed 

by OECD/NEA to test the capability of current transport methods and codes in dealing 

with whole-core simulations without spatial homogenization. The benchmark geometry is 

the sixteen assembly (quarter core symmetry) C5 MOX fuel assembly proposed by 

Cavarec.46 Each fuel assembly consists of a 17x17 lattice of square pin cells. The side 

length of each pin cell is 1.26 cm and all the fuel pins and guide tubes have a 0.54 cm 

radius. The benchmark extension has introduced three different configurations of the 

reactor core: 

• Unrodded configuration. 
• Rodded-A configuration. 
• Rodded-B configuration. 
 

The unrodded configuration does not include any control rod in the model; in the 

second configuration Rodded-A, a control rod cluster is inserted 1/3 of the way into the 

inner UO2 assembly (refer to Figure 6-29 for a model view on the x-y plane). In the 

Rodded-B configuration, the control rod clusters are inserted 2/3 of the way into the inner 

UO2 assembly and 1/3 of the way into both MOX assemblies. 

The seven-group, transport corrected, isotropic scattering cross-sections for each 

material were obtained using the collision probability code DRAGON,49 which uses the 

WIMS-AECL 69-group library; these cross-sections include up-scattering processes also. 

These seven-group cross-sections proved the most difficult to solve and thus, were 

chosen to enhance transport difficulties of heterogeneous problems. 

This problem presents significant transport effects due to the heterogeneous 

configuration, and highly angular dependent flux on the fuel-moderator interface. The 
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model is discretized with 946,080 fine meshes, and an S6 level symmetric quadrature set 

is used. The PENTRAN Code System required a memory allocation of 1381.2 

MB/Processor with an 8-space and 2-angle domain decomposition strategy. An EP-SS4 

method is used for the FAST© preconditioner, requiring 548.6 MB/Processor with a 16-

space domain decomposition strategy. In the PENTRAN code, the point-wise flux 

convergence tolerance was chosen equal to 1.0e-3; while the convergence tolerance on 

the criticality eigenvalue was set equal to 1.0e-5. The FAST© preconditioner used the 

same convergence criteria specified for PENTRAN. Both preconditioned and non-

preconditioned transport calculations ran on the 16-processors PCPENII Cluster. 

In the following sections, I will present the results and performance obtained with 

PENTRAN-SSn using the FAST© preconditioner for the aforementioned three 

configurations. 

9.3.1 MOX 3-D Unrodded Configuration 

In this case, the model of the reactor core does not contain any control rod; 

therefore, the FAST© preconditioner yields the most accurate solution. Table 9-2 presents 

the results obtained with PENTRAN and PENTRAN-SSn as compared to a Monte Carlo 

reference solution. 

Table 9-2. Results obtained for the MOX 3-D in the Unrodded configuration. 

Method Criticality 
eigenvalue 

Relative 
error (pcm) 

Inner 
iterations

Total 
Time 

Time 
ratio 

Inner it. 
ratio 

Monte Carlo 1.14308±0.0026 - - - - - 
PENTRAN 1.1466 307.94 2755 2.97d 1 1 

PENTRAN-SSn 1.14477 147.85 413 15.2h 4.7 6.67 
FAST© 1.15891 1384.85 - 6.9h - - 

 
The inner iterations and time ratios presented in Table 9-2 are calculated using the 

values obtained with non-preconditioned PENTRAN and PENTRAN-SSn. Since no 
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synthetic acceleration is employed within PENTRAN-SSn, the values of time ratio and 

inner iterations ratio are similar, as expected. 

For this case, I observed an improvement in the accuracy of the criticality 

eigenvalue due to the preconditioned solution. It is worth mentioning that improvements 

in accuracy have been observed also for the pin-power distributions. 

Figure 9-6 shows that for this case the accurate critical flux distribution and 

eigenvalue provided by FAST© yield a non-oscillatory behavior of the criticality 

eigenvalue for PENTRAN-SSn, leading to a very steep error reduction as shown in 

Figure 9-7. 

Figure 9-7 includes also a separate chart that shows the behavior of the criticality 

eigenvalue relative error for PENTRAN-SSn. 
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Figure 9-6. Behavior of the criticality eigenvalue as a function of the outer iterations. 
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Figure 9-7. Convergence behavior of the criticality eigenvalue. 

Figure 9-8 shows that the total computation time could be further reduced by 

terminating the preconditioning phase earlier in the calculation process, since the 

variation on the solution obtained with FAST© is not significant. 
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Figure 9-8. Preconditioning and transport calculation phases with relative computation 

time required. 
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9.3.2 MOX 3-D Rodded-A Configuration 

The results of PENTRAN and PENTRAN-SSn, as compared to the reference 

Monte Carlo solution, are shown in Table 9-3. 

Table 9-3. Results obtained for the MOX 3-D Rodded-A configuration. 

Method Criticality 
eigenvalue 

Relative 
error (pcm) 

Inner 
iterations

Total 
Time 

Time 
ratio 

Inner it. 
ratio 

Monte Carlo 1.12806±0.0027      
PENTRAN 1.12753 -46.98 2714 3.4d 1.0 1.0 

PENTRAN-SSn 1.12890 74.46 468 15.9h 5.1 5.8 
FAST© 1.14582 1574.38 - 7h - - 

 
For this case PENTRAN-SSn yield a speed-up of 5.1 compared to the non-

preconditioned transport calculation. Note also that PENTRAN-SSn overestimates the 

criticality eigenvalue, which is a conservative solution from an engineering point of view. 

Figure 9-9 shows the behavior of the criticality eigenvalue as a function of the 

outer iterations; note that PENTRAN-SSn reduces the necessary number of outer 

iterations by a factor of ~17 as compared to non-preconditioned PENTRAN. 
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Figure 9-9. Behavior of the criticality eigenvalue as a function of the outer iterations. 
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Figure 9-10 shows the behavior of the relative error as a function of the outer 

iterations; this figure includes a chart which shows the convergence behavior for 

PENTRAN-SSn only. 

 
Figure 9-10. Convergence behavior of the criticality eigenvalue. 

As clearly shown in Figure 9-10, the relatively accurate critical flux and criticality 

eigenvalue provided by FAST©, produce a steep error reduction of ~3 outer iterations for 

each order of magnitude. As previously discussed, the EP-SSN method is very efficient in 

resolving the low-frequency error modes while the transport calculation corrects the 

preconditioned solution by resolving high-frequency error modes. 

Figure 9-11 presents the behavior of the criticality eigenvalue calculation during 

the preconditioning and transport calculation phases. Note that the total computation time 

of 15.9 hours could be further reduced by earlier termination of the preconditioning 

phase, because from about the 40th iteration the relative change in the criticality 

eigenvalue is small. 
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Figure 9-11. Preconditioning and transport calculation phases with relative computation 

time required. 

9.3.3 MOX 3-D Rodded-B Configuration 

For this configuration the control rods are inserted at different positions inside the 

reactor core. Table 9-4 presents PENTRAN and PENTRAN-SSn results as compared to 

the reference Monte Carlo solution. 

Table 9-4. Results obtained for the MOX 3-D Rodded-B configuration. 

Method Criticality 
eigenvalue 

Relative error 
(pcm) 

Inner 
iterations

Total 
Time 

Time 
ratio 

Inner it. 
ratio 

Monte Carlo 1.07777±0.0027 - - - - - 
PENTRAN 1.06772 -932.48 1352 1.9d 1 1 

PENTRAN-SSn 1.07356 -390.62 526 17.7h 2.6 2.57 
FAST© 1.09553 1647.85 - 8.2h - - 

 
The control rods introduce strong angular dependencies in the particle flux 

distribution; hence, as expected the FAST© preconditioner yields a less accurate solution 

compared to the Rodded-A or Unrodded cases. However, the accuracy is sufficient to 
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accelerate the transport calculation by a factor of ~2.6. Figure 9-12 shows the behavior of 

the criticality eigenvalue as a function of the outer iteration number. 
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Figure 9-12. Behavior of the criticality eigenvalue as a function of the outer iterations. 

PENTRAN-SSn achieve the converged solution in half of the outer iterations 

required by the non-preconditioned PENTRAN; moreover, for this case the FAST© 

algorithm increases the accuracy of the solution compared to Monte Carlo. The improved 

accuracy is due to the fact that the solution provided by FAST© reduces the numerical 

diffusion phenomenon caused by the relatively coarse discretization along the z-axis. 

Figure 9-13 presents the convergence behavior of the criticality eigenvalue 

obtained with PENTRAN-SSn and PENTRAN. 
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Figure 9-13. Convergence behavior of the criticality eigenvalue. 

The relative error drops sharply in the first iterations due to the preconditioned 

solution. Figure 9-14 presents the behavior of the criticality eigenvalue in the 

preconditioning and transport calculation phases; again, the total computational time 

could be further reduced by stopping the FAST© preconditioner at an early stage in the 

calculation process. 
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Figure 9-14. Preconditioning and transport calculation phases with relative computation 

time required. 
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In conclusion, the FAST© preconditioning algorithm integrated into the 

PENTRAN-SSn code has been proven very effective in accelerating the transport 

calculations for a large whole-core 3-D model. The computational time is reduced by a 

factor of 3 to 5, depending on the problem, as compared to non-preconditioned 

calculations. Moreover, I have also observed a slight improvement in the accuracy of the 

criticality eigenvalue and power distribution. 
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CHAPTER 10 
SUMMARY, CONCLUSION, AND FUTURE WORK 

In this research work, I have developed advanced quadrature sets including the PN-

EW and the PN-TN, along with a new biasing technique named Regional Angular 

Refinement (RAR). These quadrature sets do not present negative weights for any SN 

order and they are suitable for problems characterized by highly angular dependent fluxes 

and/or sources. Based on the results obtained, the PN-TN quadrature set yields very 

accurate results and it is currently implemented in the PENTRAN Code System. The 

RAR technique has been proven very effective in dealing with highly angular dependent 

sources; the quadrature sets biased with RAR lessen the ray-effects, therefore yielding 

accurate results in a fraction of the time required by a standard quadrature set. 

These new quadrature set generation techniques are very suitable for the simulation 

of medical physics applications and devices, where large regions of air require advanced 

quadrature sets in order to remove ray-effects from the solution. 

I have investigated the Even-Parity Simplified SN (EP-SSN) formulation and it has 

been proven to be very accurate for a wide range of problems, including fixed source and 

criticality calculations. Therefore, I developed a new 3-D code, named PENSSn (Parallel 

Environment Neutral-particle Simplified Sn) which is based on the EP-SSN equations. 

The code is designed for parallel computing environments and it solves the EP-SSN 

equations with anisotropic scattering of arbitrary order, for fixed source and criticality 

problems. The code has been benchmarked using realistic 2-D and 3-D problems, 

including a small LWR and an FBR model, and the MOX 2-D/3-D Fuel Assembly 
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Benchmark problem. The code yields very accurate results within the limitations of the 

method. In summary, the main limiting factors of the EP-SSN methodology are the 

following: 

• Optically thin media. 
• Low density or void-like regions. 
• Strong spatial/angular flux variations. 
• Systems characterized by highly peaked anisotropic scattering. 
 

The parallel capabilities of PENSSn have been tested on the PCPENII cluster 

(Nuclear and Radiological Engineering) and the Zeta cluster (Electrical and Computer 

Engineering High Performance Computing Lab) at the University of Florida; the code 

present a parallel fraction of ~87% and the parallel performance achieved follows the 

predictions of Amdahl’s Law. 

To speed-up the convergence of the SN method, I have developed a new synthetic 

acceleration method based on the EP-SSN equations; however, I found limited 

applicability for this method, due to instabilities which appear for mesh sizes greater than 

1 mfp and for highly heterogeneous problems. 

Further, I have developed a new preconditioning algorithm based on the EP-SSN 

equations, for the acceleration of the SN method. The Flux Acceleration Simplified 

Transport (FAST©) preconditioner is a fully automated system based on the kernel of the 

PENSSn code. FAST© is currently implemented in the PENTRAN-SSn transport code. 

This approach is very effective for accelerating large radiation transport problems in 

parallel computing environments, such as the MOX 3-D Fuel Assembly Benchmark 

problem. For this problem, the FAST© preconditioner has reduced the total computation 

time by a factor ranging between ~2.6 and ~5.1 compared to a standard non-accelerated 

transport calculation. 
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In conclusion this research work has culminated in the development of new 

methodologies that enhance the accuracy and feasibility of transport calculations for large 

realistic models. The new quadrature sets developed will improve the accuracy of dose 

calculations for medical physics applications. 

Due to its accuracy and limited execution times, the PENSSn code is an ideal 

candidate for core physics, core design and certain shielding applications. A high 

performance has been obtained using Krylov subspace iterative solvers, which in the 

future may become a standard method for solving radiation transport problems. 

Moreover, a new formulation of the EP-SSN equation has been developed which proved 

to be a key aspect for the preconditioning/acceleration algorithm designed for the SN 

method. 

Finally, the new FAST© preconditioner, integrated into the PENTRAN-SSn Code 

System, represents a leap forward in computational physics; large 3-D radiation transport 

calculations for core or shielding design can now be performed within a fraction of the 

computation time required in the past. 

The methods described in this dissertation can be further enhanced and developed 

by studying the following issues: 

• The calculation of the point-weights for the PN-TN quadrature set could be 
improved by solving the linear system of equations obtainable from the even- and 
odd-moment conditions of the direction cosines. 

• A selection method for the biasing region in the RAR technique should be 
developed based on the physics of the problem. 

• An automatic load-balancing algorithm for the Krylov solvers should be developed, 
following the ideas described in Chapter 8. This new algorithm may significantly 
improve the parallel performance of the angular domain decomposition strategy. 

• Memory usage optimization and fine-tuning of the domain decomposition 
algorithms in the PENSSn code. 

• Extension of the PENSSn code with time-dependent capabilities. 
• The PENSSn code will be reviewed for QA. 
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• The new synthetic acceleration method based on the EP-SSN equations could be 
investigated further; a consistent discretization between the EP-SSN and SN 
discretized operators may yield a stable algorithm for a wider range of problems. 

• An optimization study on the FAST© preconditioner should be undertaken, in order 
to identify the necessary level of accuracy which yields the best performance in 
terms of speed-up. 
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APPENDIX A 
EXPANSION OF THE SCATTERING TERM IN SPHERICAL HARMONICS 

The angular dependency of the scattering cross section can be approximated by 

expanding the function using a complete basis of polynomial functions: spherical 

harmonics. 
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The scattering cross section is assumed to be dependent only on the cosine of the 

scattering angle, i.e. Ω⋅Ω=
))

'0µ , where Ω
)

and 'Ω
)

 are the directions of the particle before 

and after the scattering process. Note that this assumption implies the fact that the 

probability of scattering into the direction 'Ω
)

 and energy group g’ does not depend on the 

initial direction of the particle. For very low energy ranges, i.e. “cold neutrons”, this 

assumption is only approximate. 

In Eqs. A.1 and A.2 the angular variable in normalized on the unit sphere as 

follows 
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The direction vector Ω
)

 is defined by the polar ( πθ <<0 ) and azimuthal 

( πϕ 20 << ) angles. Hence the direction cosine between the directions Ω
)

and 'Ω
)

 is 

given by 

)'cos()1()1(' 2/12'2/12
0 ϕϕµµµµµ −−−+= .   (A.4) 

The Legendre addition theorem states the following in terms of orthogonal spherical 

surface harmonics 
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The spherical harmonics functions (Y) are defined in terms of the Associated Legendre 

polynomials 
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By using Eqs. A.5, A.6 and A.7, the Legendre polynomials are rewritten as follows 
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So that the complete scattering kernel expanded in terms of spherical harmonics becomes 
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APPENDIX B 
PERFORMANCE OF THE NEW EP-SSN FORMULATION 

The new formulation of the EP-SSN equations discussed in Chapter 4 is tested for 

the small FBR problem described in Chapter 6. The new formulation derived is useful to 

accelerate the solution of the EP-SSN equations via the source iteration method. The 

small FBR model is simulated with the new formulation EP-SSN method and its 

performance is compared to the standard EP-SSN formulation. 

Table B-1 shows the number of iterations required to converge and the relative 

computation time for different EP-SSN methods derived with the standard formulation. 

Table B-1. Performance data for the standard EP-SSN formulation. 

Method 
Krylov 

iterations
Inner 

iterations
Outer 

iterations
Computation 

time (sec) 
EP-SS2 375882 1237 91 48.3 
EP-SS4 635326 1038 74 79.6 
EP-SS6 884580 953 67 110.1 
EP-SS8 1137518 907 63 144.7 

 
Table B-2 shows the number of iterations required by the new EP-SSN formulation 

for solving the small FBR benchmark problem. 

Table B-2. Performance data for the new EP-SSN formulation. 

Method 
Krylov 

iterations
Inner 

iterations
Outer 

iterations
Computation 

time (sec) 
EP-SS2 194071 343 17 23.2 
EP-SS4 385411 517 31 47.8 
EP-SS6 614960 589 37 75.9 
EP-SS8 865288 636 41 107.6 

 
The new EP-SS4 formulation reduces by more than 50% the number of inner 

iterations and computation time, compared to the standard formulation. This behavior is 

due to the reduction in terms of spectral radius achieved by the new EP-SSN formulation. 
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However, the new formulation increases the spectral condition number of the matrix 

operators; this behavior is detected in the ratio between Krylov iterations and inner 

iterations, shown in Table B-3. The new EP-SSN formulation presents higher values for 

this ratio, meaning that the matrix operators are characterized by larger spectral condition 

numbers. 

Table B-3. Ratio between Krylov iterations and inner iterations. 

Method Standard 
EP-SSN 

Modified 
EP-SSN 

EP-SS2 304 566 
EP-SS4 612 745 
EP-SS6 928 1044 
EP-SS8 1254 1361 

 
I have observed also a degradation of the performance of the new EP-SSN 

formulation for higher SSN orders. Table B-4 compares the inner iterations ratio and time 

ratio between the standard and new EP-SSN formulations; note that the speed-up 

decreases for increasing SSN orders. 

Table B-4. Inner iterations and time ratios for different SSN orders. 

Method
Inner iterations 

ratio Time ratio 
EP-SS2 3.6 2.1 
EP-SS4 2.0 1.7 
EP-SS6 1.6 1.5 
EP-SS8 1.4 1.3 

 
 The speed-up degradation can be explained by observing that the direction 

dependent removal cross section in Eq. B.1 depends on the weights of the quadrature set. 

For high order quadrature sets, the value of the weight is decreased accordingly. Due to 

this aspect, the removal cross section is less affected by the scattering term as the 

quadrature set order increases, therefore leading to a degradation of the method. This 
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argument explains also the behavior observed for the transport equation, verified using 

the SN formulation, where no significant benefits are observed. 
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 Moreover, note that in Table B-4 the reduction in terms of inner iterations does 

not match necessarily the reduction in computation time; clearly, this is due to the larger 

number of Krylov iterations required by the new EP-SSN formulation compared to the 

standard formulation. 
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